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Abstract

Comprehending and producing words is a natural process for human
speakers. In linguistic theory, investigating this process formally and com-
putationally is often done by focusing on forms only. By moving beyond
the world of forms, we show in this study that the Discriminative Lexicon
(DL) model operating with word comprehension as a mapping of form onto
meaning and word production as a mapping of meaning onto form generates
accurate predictions about what meanings listeners understand and what
forms speakers produce. Furthermore, we show that measures derived from
the computational model are predictive for human reaction times. Although
mathematically very simple, the linear mappings between form and meaning
posited by our model are powerful enough to capture the complexity and pro-
ductivity of a Semitic language with a complex hybrid morphological system.
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1 Introduction

Most formal and computational accounts of word structure unfold almost
exclusively in the world of forms: Forms are related to and compared with
other forms. For instance, the prosodic theory of non-concatenative morphol-
ogy laid out in McCarthy (1981) starts with underlying forms that are the
starting point for a set of rules that derive words’ surface forms. A Semitic
verb form is conceived of as consisting of a root, filled with consonants which
carry the meaning of the lexeme and its derivations, and a melody of vowels
in which inflection is expressed. The Arabic form kataba ‘he wrote’ con-
sists of the root

√
ktb, which expresses the lexeme ‘to write’ and the melody

aaa, which expresses third person singular past. Both, consonantal root and
vowel melody are mapped onto a skeleton CVCVCV from left to right result-
ing in the final word form kataba. Nouns, too, can have non-concatenative
inflections; in Arabic or Maltese non-concatenative plurals are referred to as
broken plurals. These plurals can be analyzed prosodically.

In subsequent work, the nature of the CV-skeleton changed, but not the
fact that forms are mapped onto forms. McCarthy and Prince (1990, 1996)
developed a theory, called Prosodic Morphology, in which the skeleton is re-
placed by prosodic categories using Arabic non-concatenative broken plurals
as a testing ground. The singular nafs ‘soul’ has a corresponding broken
plural nufuus. This plural can be characterized as an iamb: A light syl-
lable followed by a heavy syllable. Formally McCarthy and Prince (1990)
account for the iambic plural as a mapping of the phonological material from
the leftmost superheavy syllable (nafs) of the singular onto an iamb and a
concomitant change of vowel quality.

In a further attempt to reduce stipulations about the shape of non-
concatenative morphology, Kastner (2019) proposed that the symbols for
the verb and its inflectional features are first inserted into a syntactic tree.
Subsequently, general principles of the Hebrew sound system account for
the arrangement of the segmental material of the verbal root and its inflec-
tional exponents. For instance, the root node

√
ktb ‘to write’ and its voice

specification {a,a} for past tense are inserted into the syntactic tree in a
concatenative fashion as [Tense[Past [Voice [v

√
ktb]]]] (where small v is a

functional head). This results in the input form ktb,aa for the phonologi-
cal component. A hierarchy of constraints (Prince & Smolensky, 2004) then
predicts the optimal output katab. Instead of deriving Hebrew verbal forms
from consonantal roots, as argued by Kastner (2019) and McCarthy (1981),
Ussishkin (2005) proposes that words are derived from other words, subject
to a set of prosodic and morphological constraints.

Many computational models of morphology likewise do not predict words’
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forms from their meanings, but from other forms of these words. Some of
these models set up a list of possible changes that have to be applied to move
from one form to another, and then seek to predict which of the possible
form changes is appropriate given selected properties of the base word. For
instance, Ernestus and Baayen (2003) examined several quantitative models
that all were given the task to predict whether or not the stem-final obstru-
ent of a Dutch plural noun or verb form is voiced or voiceless. These models,
which ranged from recursive partitioning trees and logistic regression models
to Analogical Modeling (Skousen, 1989), Memory-Based learning (Daelemans
& Van den Bosch, 2005) and Optimality Theory (Boersma & Hayes, 2001),
all performed with roughly the same accuracy, suggesting that any reason-
ably decent statistical classifier, given access to the relevant features of the
base word, can accomplish this classification task.1 However, all these mod-
els are incomplete, in the sense that to create an actual plural form, the
appropriate voicing feature has to be combined with further concatenation
of the appropriate plural suffix.

For Semitic languages such as Arabic and Maltese, predicting the plural
of a noun is set up as a classification problem by Dawdy-Hesterberg and
Pierrehumbert (2014), focusing on Arabic, and by Nieder, Tomaschek, et al.
(2021), focusing on Maltese. The former study used the Generalized Context
Model (Nosofsky, 1986), the latter study applied Memory-Based learning
(Daelemans et al., 2001), Naive Discriminative Learning (Baayen, 2011), as
well as an Encoder-Decoder deep learning architecture (McCoy et al., 2020)
to generate plurals from singulars. The deep learning model stands in the
tradition of the past-tense model of Rumelhart and McClelland (1986), who
derived English past-tense forms from their present-tense counterparts.

The only way in which semantics plays a role in these grammatical and
computational models of inflection is through inflectional contrasts, such as
singular versus plural, which are used to set up separate classes of forms
(Albright & Hayes, 2003). However, it seems unlikely that native speakers
produce plurals from singulars (or vice versa). In her classic study of the
knowledge of children of English morphology, Berko (1958) notes that only
28% of the 4- and 5-year olds, and only 38% of the 5- and 7-year olds pro-
vided the plural gutchess for the given singular gutch. Van de Vijver and
Baer-Henney (2014) also found that many children repeat a novel given sin-
gular as plural in a wug test in German. Zamuner et al. (2006) found that
Dutch children are unable to form a novel singular from a given, novel plural,
while they have no problems providing a singular from a known plural. How-

1Thus, the recursive partitioning algorithm of Belth et al. (2021) is also likely to perform
well.
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ever, they were reasonably successful in providing novel plurals from novel
singulars. Klafehn (2013) reports that Japanese native speakers are unable
to provide inflected words for provided novel words.

All these results suggest that producing a novel word form is not neces-
sarily as straightforward as simply applying a rule to manipulate a form in an
appropriate context. But it is not just results from wug tests that strongly
indicate that plurals are not formed on the basis of their singulars. Bybee
(1995) argues that in Hausa it is more insightful to characterize a plural in
a product-oriented way: as a characterization of what makes a good plural
in Hausa, rather than as an instruction how to turn a singular into a plu-
ral. This is because there is little predictability from singular to plural. A
plural and a singular consist of overlapping phonological material, but the
overlap can be inconsistent from singular-plural pair to singular-plural pair.
Of course, there are situations in which form-to-form mappings are useful.
For instance, instructions for how to create the forms of a paradigm from its
principal parts can be quite helpful for second language learners, as a way to
efficiently master paradigms, and for analysts, as a way of coming to grips
with the systems of implications among word forms. But whether native
speakers derive forms via other forms remains an open question (Blevins,
2016; Nieder, Tomaschek, et al., 2021).

In this study, we move beyond the world of forms, and model compre-
hension as a mapping of form to meaning and production as a mapping of
meaning to form. We make use of a computational implementation of Word
and Paradigm Morphology (Blevins, 2016; Matthews & Matthews, 1972), the
‘discriminative lexicon’ (DL) (Baayen et al., 2019), to model the noun sys-
tem of Maltese, a Semitic language spoken in Europe. The DL model differs
from most theories of morphology in that comprehension and production is
achieved without requiring theoretical constructs such as stems, exponents,
and inflectional classes. In general, the task of morphological theory is often
conceptualized as providing a formal mechanism specifying what sound se-
quences are possible meaningful words. The DL model divides this task into
two subtasks: first, to predict what possible forms are, given their meanings;
and second, to predict what possible meanings are, given their forms.

In psychology, several computational models have been put forward that
construct complex words starting from their meanings. The models by Levelt
et al. (1999) and Dell (1986) are similar in design to realizational theories
of morphology (see, e.g., Bonami & Stump, 2016; Stump, 2001). To our
knowledge, these two psychological computational models have not been im-
plemented for and applied to languages other than English, and it is therefore
unclear whether the mechanisms of spreading activation and interactive acti-

4



vation, that they make use of, can be made to work for complex morphological
systems such as the Maltese noun system.

Gaskell and Marslen-Wilson (1997) proposed a three-layer network model
that maps speech input onto semantics, while explicitly shying away from
making claims about representations that might develop in the hidden layer
of their network. The triangle model of Harm and Seidenberg (2004) like-
wise addresses the relation between words’ forms and their meanings, using
a more complex multi-layer network. This model has been tested not only
on English, but also on Serbo-Croatian (Mirković et al., 2005). Following
their lead, the ‘Discriminative Lexicon’ model (Baayen et al., 2019) zooms
in on the mappings from form to meaning in visual and auditory compre-
hension, and the mapping from meaning to form in production. As in the
above connectionist models, both words’ forms and their meanings are rep-
resented by high-dimensional numeric vectors. However, the DL model sim-
plifies the connectionist multi-layer networks of Gaskell and Marslen-Wilson
(1997) and Harm and Seidenberg (2004) by removing all hidden layers. The
simple input-to-output network that results is mathematically equivalent to
multivariate multiple linear regression.

By representing words’ meanings numerically, it becomes possible to
harness the power of distributional semantics (Landauer & Dumais, 1997;
Mikolov et al., 2013; Mitchell & Lapata, 2008) when considering the ques-
tions of what possible meanings are given words’ forms, and what possible
forms are given words’ meanings. This is important, because form and mean-
ing can show intricate interactions. For instance, Baayen and Moscoso del
Prado Mart́ın (2005) called attention to irregular verbs in English (and as
well in German and Dutch) being more similar to each other in their mean-
ings than regular verbs. The greater semantic density of irregular verbs in
English may underlie the interaction of semantic deficits and regularity in
aphasia reported by Bird et al. (2003), and modeled computationally using
distributional semantics by Heitmeier and Baayen (2021). Below, we shall
see that the broken plurals and the sound plurals of Maltese may also pattern
differently in semantic space.

Several studies suggest that the DL correctly predicts the forms of com-
plex words (see Baayen et al. (2018) for Latin verb inflection, Chuang et al.
(2020) for Estonian noun inflection, van de Vijver and Uwambayinema (ac-
cepted) and van de Vijver et al. (2021) for Kinyarwanda nouns and verbs,
and Chuang, Kang, Luo, et al. (2021) for Korean verbs). The first goal of
the present study is to clarify whether the theory of the DL also correctly
predicts Maltese singular and plural nouns. Of particular interest is how well
the simple networks used by the DL are able to model not only concatenative
morphology, but also non-concatenative morphology.
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The framework of the DL has also been used to predict how words are
realized phonetically. Tomaschek et al. (2021) modeled the duration of En-
glish word-final [s] for different grammatical functions, Saito et al. (2021) used
measures from the model to predict tongue trajectories, Chuang, Vollmer,
et al. (2021) predicted word duration for English pseudowords as pronounced
by native speakers of English, and Chuang, Kang, Luo, et al. (2021) applied
the model to word duration in Taiwan Mandarin. The latter study also
shows that the priming effects reported for Dutch in Creemers et al. (2020)
are correctly predicted by the model (see also Baayen & Smolka, 2020, for
German). In the light of these results, the second goal of the present study
is to clarify whether measures derived from the model help predict lexical
processing costs, as gauged with a cross-modal primed lexical decision task.

The remainder of this paper is structured as follows. We first provide
an overview of plural formation in Maltese and report previous experimental
and computational studies on Maltese plurals. Section 3 proceeds with an
introduction to the ‘Discriminative Lexicon’. We then present the compu-
tational models that we developed for the Maltese noun system. We report
how well they perform as a memory for known words, and also examine the
extent to which the memory is productive, in the sense that it can handle
unseen words that it has not been trained on. Subsequently, we show how
the theory can be used to obtain further insight into the lexical processing of
Maltese nouns in comprehension. We conclude this study with a discussion
of the new insights that our results bring to morphological theory on the one
hand, and its limitations on the other hand.

2 Maltese plurals

The turbulent history of Malta is reflected in the national language of the is-
land. Maltese developed from Maghrebi Arabic, and has absorbed influences
from Sicilian, Italian and, more recently, from English. These influences
affected its lexicon and its morphology (Hoberman, 2007).

The Maltese noun plural system shows a perplexing amount of possi-
ble plural forms. Maltese has a great number of typically Semitic non-
concatenative plural forms—called broken plurals in the Semitic linguistic
tradition. Broken plurals are characterized by differences in the prosodic
structure of a plural as compared to its corresponding singular form. For
example, the singular form kelb ‘dog’ /kElp/ has the plural form klieb ‘dogs’
/kli:p/2 in which the coda consonant [l] of the singular is found in the onset

2Another possible phonetic variant given in the online dictionary Ġabra is /klI:p/
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of the plural form. In addition, the vowel [E] in the singular form corresponds
to [i:] in the plural. Schembri (2012) distinguishes 11 different broken plural
patterns. In Maltese, broken plurals account only for a small proportion of
plural forms of the language (Borg & Azzopardi-Alexander, 1997, report a
proportion of 10%). In addition to broken plurals, Maltese also has a sizable
set of sound plurals and the majority of plurals belong to this category (Borg
& Azzopardi-Alexander, 1997; Nieder, van de Vijver, et al., 2021a).

Sound plurals are characterized by additional segmental material at the
right side of the plural in comparison to the singular: The singular form
prezz ‘price’ has the plural form prezzijiet in which the plural differs from
the singular due to the presence of a particular plural exponent, the suffix
-ijiet . In their work, Nieder, van de Vijver, et al. (2021a, 2021b) distinguish
12 different sound plural patterns (they count the dual forms as a sound
plural pattern) with different frequency distributions and productivity. Table
1 below gives an overview of the Maltese sound and broken plural patterns
and the two possible dual forms.

The complexity of the Maltese noun system stems from two sources. One
is the sheer variety of suffixes and patterns exhibited in plurals. This sets
Maltese apart from languages in which the complexity of nominal systems is
due to nouns falling into different declension classes. The other complexity is
the availability of several plural forms for many singulars, without there being
a noticeable semantic difference among the plural variants. For example, the
singular kaxxa (sg.) ‘box’ has two plural forms, one is a broken plural, kaxex,
and one is a sound plural, kaxxi ; another example is the singular giddieb (sg.)
‘liar’, which has two sound plural forms, giddieba and giddibin.

In addition to sound and broken plurals, Maltese shows other plural types
for a small number of nouns, such as the suppletive plural, e.g. mara - nisa
‘women’ or a double plural marking that is a blend of a broken plural and
a sound plural suffix (called plural of the plural by Mayer et al. (2013)),
the singular tarf has the blended plural trufijiet ‘edge’. A few words are
pluralized with a dual suffix but grammatically behave like plural words, for
example sieq - saqajn ‘foot’ (Borg & Azzopardi-Alexander, 1997; Mayer et
al., 2013).

2.1 Experimental and computational research
on Maltese plurals

There exists both experimental and computational research on the Maltese
nominal system. In the following, we first discuss the experimental research
on Maltese nouns before turning to the computational studies.
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Singular Plural Gloss Plural Type

fardal fra:dal ‘aprons’ broken A, CCVVCVC
birra birer ‘beers’ broken B, (C)CVCVC
kbir kba:r ‘big (pl.)’ broken C, CCVVC
ftira ftajjar ‘type of bread (pl.)’ broken D, CCVjjVC
bitèa btieèi ‘yards’ broken E, CCVVCV
sider isdra ‘chests’ broken F, VCCCV
marid morda ‘sick persons’ broken G, CVCCV
gèodda gèodod ‘tools’ broken H, (gè)VCVC
elf eluf ‘thousands’ broken I, VCVC
gèaref gèorrief ‘wise men’ broken J, CVCCVVC(V)
gèama gèomja ‘blind persons’ broken K, (gè)VCCV
karta karti ‘paper’ sound, -i
omm ommijiet ‘mother’ sound, -ijiet
rixa rixiet ‘feather’ sound, -iet
giddieb giddieba ‘liar’ sound, -a
meèlus meèlusin ‘freed’ sound, -in
kuxin kuxins ‘cushion’ sound, -s
triq triqat ‘street’ sound, -at
sid sidien ‘owner’ sound, -ien
baèri baèrin ‘sailor’ sound, -n
èati èatjin ‘guilty’ sound, -jin
qiegè qigèan ‘bottom’ sound, -an
spalla spallejn ‘shoulder’ dual, -ejn/ajn
sieq saqajn ‘foot’ dual, -ejn/ajn

Table 1: Maltese broken plurals, sound plurals and duals (examples taken
from Nieder, van de Vijver, et al., 2021a; Schembri, 2012). The words are
provided in Maltese orthography, which is a close approximation of a broad
phonetic transcription, except in two cases. First, long a is not indicated
in orthography. We therefore added a colon to long a. Second, the digraph
gè is historically a pharyngeal fricative, which was lost in modern Maltese
(Borg & Azzopardi-Alexander, 1997).
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Two experimental studies have clarified that native speakers use infor-
mation about pattern frequency to produce and process plural forms for sin-
gulars they never heard before (Nieder, van de Vijver, et al., 2021a, 2021b).
While some plural suffixes and patterns occur frequently in the language, for
example the sound plural forms ending in -i and -ijiet or the broken plu-
ral patterns characterized by the CV-templates CCVVCVC (broken A) and
CCVVC (broken C), others are found in a relatively small number of plural
forms only (see Nieder, van de Vijver, et al., 2021a, 2021b; Schembri, 2012,
for detailed information about pattern frequency in Maltese).

In a production study, Nieder, van de Vijver, et al. (2021a) asked Maltese
native speakers to produce plurals for existing singulars and pseudo-singulars.
The plurals produced by the participants reflected the frequency of the plural
patterns in Maltese. The participants made use of more frequent plural suf-
fixes when they produced sound plurals and of more frequent CV templates
when they produced broken plurals (a finding that is also reported by Drake
(2018) for Maltese diminutives).

Further evidence for the importance of the type frequency of exponents
(sound plurals) and CV templates (broken plurals) emerged from a reac-
tion time study by Nieder, van de Vijver, et al. (2021b). Frequent broken
templates and frequent sound plural exponents elicited significantly shorter
reaction times than infrequent ones. This experiment did not provide evi-
dence for an effect of plural type (broken versus sound): on average, response
times for both kinds of plurals were highly similar. Below, we return to this
study, to show that nevertheless the way in which responses are generated in
this task differs for broken plurals and sound plurals.

Computational analyses of the Maltese plural formation have focused
on form-to-form modeling using sets of rules or using analogical mappings.
These computational studies are moving away from an earlier consensus
among Maltese scholars, according to which there are no rules governing
broken plurals (as discussed in Schembri, 2012). Invariably, the singular
form is taken as starting point for predicting the corresponding plural form.
Some models are classifiers for plural classes, others generate full plural forms
given the corresponding singulars.

Mayer et al. (2013) present a computational study of Maltese broken
plurals that focuses on the application of rules to form plurals from singulars.
They propose a set of four rules, based on the work of Schembri (2012),
which derives broken plurals from their singulars. These rules were shown
to correctly derive 75% of all 654 forms in their database that have a broken
plural. This study shows unambiguously that the Maltese broken plurals
are to a considerable extent systematic, but it does not address the question
of how speakers select between broken and sound plurals. Furthermore, as
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mentioned above, it is not self-evident from a cognitive perspective that
speakers would create plurals from singulars.

Farrugia and Rosner (2008) also focused exclusively on broken plurals,
using an artificial neural network with encoder and decoder hidden layers, to
categorize and produce Maltese broken plurals. As basis for their work they
also edited the analysis of Schembri (2012). Operating on phoneme-based
representations, their model categorized nearly all nouns in their dataset with
an accuracy of around 98%. Although they report good results for forms the
model had seen in training, it did not perform well on unseen forms, achieving
exact matches between predicted and observed plural forms for only 26.6%
of the cases. This computational model again shows that there are indeed
systematic relations between the form of the singular and its broken plural
form, and that these relations can be derived from the data without requiring
handcrafted rules. It remains unclear, however, how the model would have
performed if it had been trained on both broken plurals and sound plurals
jointly.

Nieder, Tomaschek, et al. (2021) compared three different computational
models to investigate whether it is in principle possible to account for the
form-based relations in Maltese nominal paradigms without taking recourse
to the construct of the morpheme: the Tilburg Memory-Based Learner
(TiMBL) (Daelemans et al., 2004), the Naive Discriminative Learner (NDL)
(Baayen, 2011), and an Encoder-Decoder network. TiMBL and NDL are
classifiers, the Encoder-Decoder network is a model generating actual plural
forms. Models were trained on a dataset consisting of both sound plurals
and broken plurals. The classifiers were given the task to predict which class
out of 8 plural classes (4 broken plural classes, and 4 sound plural classes:
three for the three most frequent exponents, and one for all other expo-
nents) is appropriate for a given singular. TiMBL’s best performance under
10-fold cross-validation was 97%, whereas NDL’s best performance under
10-fold cross-validation was 88.7%. The best performance of the Encoder-
Decoder model was at 48.22%. Interestingly, although information about the
CV template has been reported to increase classification accuracy for Ara-
bic (Dawdy-Hesterberg & Pierrehumbert, 2014), such information did not
improve the accuracy of the TiMBL classifier for Maltese.

What all these modeling studies clarify is that there is considerable struc-
ture in the Maltese noun system. However, the best-performing models are
either trained on only broken plurals, or they are trained to predict form
classes, including classes that lump together less frequent form changes. Fur-
thermore, all models focus on production, predicting plurals from singulars
without considering words’ meanings, and do not address the comprehension
of Maltese nouns. In what follows, we address this broader range of questions
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within the framework of the Discriminative Lexicon. Before doing so, we first
introduce the dataset that we used for training and evaluating our models.

2.2 Dataset

The dataset consists of all broken plurals listed by Schembri (2012) and all
word forms tagged as nouns from the MLRS Korpus Malti version 2.0 and
3.0 (Gatt & Čéplö, 2013). The resulting list of nouns was then enriched
with information extracted from a Maltese online dictionary (Ġabra, Camil-
leri, 2013) using the free corpus tool Coquery (Kunter, 2017), resulting in a
dataset with singulars, their corresponding plurals and their glosses. Subse-
quently, the dataset was manually extended with information about gram-
matical number (broken vs. sound plural, dual or suppletive), CV structure,
number of occurrences (based on the Korpus Malti v. 2.0 and 3.0), origin
(Semitic vs. Non-Semitic), grammatical gender (based on Aquilina (1987)),
concreteness (abstract vs. concrete), and type of noun (verbal noun or col-
lective noun).

The resulting dataset contains 6511 word forms in total: 3364 plurals,
3132 singulars and 15 dual forms. Of the 3364 plurals, 892 are broken plural
forms while 2458 are sound plural forms (with a total of 11 different sound
plural types and 11 different broken plural types), reflecting the proportion of
plural types in use in Maltese. The remaining 29 nouns of our dataset labeled
as plurals have plurals that are neither of the broken nor of the sound type:
8 of these words have a double plural marking, e.g. sema (sg.) - smewwiet
(pl.) ‘sky’, which is a combination of a broken and a sound plural. Fifteen
words are dual forms, such as id (sg.) - idejn (dual) ‘hands’, and 6 words
have a suppletive plural, e.g. mara (sg.) - nisa (pl.) ‘women’, see Borg and
Azzopardi-Alexander (1997) for further details.

3 Predicting Maltese noun inflection

The models for the Maltese plurals reviewed in section 2.1 all predict the
appropriate form of a plural from its corresponding singular. However useful
rules for building forms from other forms may be for the teaching of a second
language, it is far from clear that native speakers and young L1 learners
would follow the same procedure (Blevins, 2016; Dell, 1986; Levelt et al.,
1999; Zamuner et al., 2011). The DL model proposed by Baayen et al. (2019)
takes as its point of departure that the task of morphology is to explain how
listeners understand complex words, and how speakers produce them. In
other words, the DL focuses on understanding words’ meanings given their
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forms, and producing words’ forms given their meanings. Furthermore, the
relation between form and meaning is modeled as immediate, without any
further intervening layers of representations.

The central ideas underlying the perspective of DL on form and mean-
ing are illustrated in Figure 1. In the upper left, the matrix C specifies,
for three words w1, w2, w3, their respective form vectors with values for two
form features, f1 and f2. In the upper right, the matrix S specifies the
semantic vectors for the same three words, which have values on the seman-
tic dimensions s1 and s2. The form vectors are displayed in the lower left,
and the semantic vectors in the lower right. The mapping F takes the red
vectors and changes them into the blue vectors. Formally, this is done by
post-multiplying C with F : CF = S. Conversely, the G matrix takes the
blue vectors and maps them onto the red vectors: SG = C. The mappings
that the DL sets up between numeric vectors representing forms and numeric
vectors representing meanings are the simplest mappings possible. They can
be conceptualized as simple artificial neural networks connecting form units
(f1, f2) and semantic units (s1, s2). In other words, the mappings implement
full connectivity between all form units and all semantic units. The networks
do not make use of any hidden layers. Equivalently, the mappings of the DL
can also be understood as implementing multivariate multiple regression. For
comprehension, for instance, the F matrix can be interpreted as the matrix
with beta coefficients of a regression model. The beta weights in the first col-
umn of F are used to predict the response variable given by the first column
of S. Likewise, the beta weights in the second column of F are used to pre-
dict the response variable given in the second column of S. The same logic
applies to the beta weights in G: For instance, the beta weights in the first
column are used to predict the response variable in the first column in C.
The method that we used to estimate the mappings F and G is taken from
linear algebra, for technical details, the reader is referred to Shafaei-Bajestan
et al. (2021).

In general, for a given set of n words and m dimensions in which differ-
ences in form are expressed, we bring together their numeric form vectors into
an n ×m form matrix C. Given k-dimensional vectors representing words’
meanings, we set up an n × k semantic matrix S. The m × k mapping F
takes the vectors in C and transforms these vectors as precisely as possible
into the semantic vectors of S. This is accomplished by solving the equation
CF = S. For production, the DL model posits a k ×m mapping G from
the meaning vectors S to the form vectors in C. This matrix is estimated
by solving SG = C. For all but the smallest toy examples, the predicted
form vectors Ĉ = SG will only approximate the targeted gold-standard form
vectors C, which is why, following statistical practice, we use the notation Ĉ
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w1

w2

w3

w1

w2

w3

C =


f1 f2

w1 1 2
w2 −2 −2
w3 −2 1

 S =


s1 s2

w1 2 −4
w2 −4 4
w3 −4 −2



( f1 f2
s1 0.5 0
s2 0 −0.5

)
G

( s1 s2
f1 2 0
f2 0 −2

)

F

Figure 1: Linear mappings between form vectors (the row vectors of C,
displayed in red on the left) and meaning vectors (the row vectors of S,
displayed in blue on the right). The mapping F changes the form vectors into
semantic vectors, and the inverse mapping G takes the semantic vectors and
changes them into the form vectors. The mappings F and G define networks,
the weights on connections from form features f to semantic features s, and
from semantic features s to form features f are given by the respective entries
in the mapping matrices.
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rather than C. The same holds for the predicted semantic vectors Ŝ. Nev-
ertheless, the estimated weights are optimal, in the sense that they minimize
the mean squared error. They represent the ‘endstate’ of learning that a
simple two-layer artificial neural network can achieve by endlessly iterating
through the training data with the incremental learning rule of Widrow and
Hoff (1960). In what follows, we refer to the learning of the mappings using
the mathematics of multivariate linear regression as ‘Linear Discriminative
Learning’ (LDL).

3.1 Constructing the form matrix

Lexeme Number Gender

kelb KELB singular M
kelba KELB singular F
klieb KELB plural M, F

Table 2: Paradigm for the Maltese noun kelb ‘dog’.

To illustrate the central concepts of LDL, consider the Maltese toy lexicon
listed in Table 2. This lexicon consists of a singular word for a male dog, a
singular word for a female dog and the plural word for both.

The first modeling step is to make a decision as to how these word forms
can be represented as numeric vectors. One possibility is to decompose word
forms into triphones, which target, in a crude way, context-sensitive phone
representations. Heitmeier et al. (2021) present a systematic overview of
modeling options for word form representations in LDL. They report best
generalizations for triphones (as compared to biphones or quadrophones) due
to their discriminatory power as a result of a balanced number of unique cues
(see Heitmeier et al., 2021). For our example lexicon, there are 11 distinct tri-
phones. We couple each distinct triphone with a form dimension. Words that
contain a given triphone receive the value 1 for this dimension, and otherwise
the value 0. For our example lexicon, we obtain the following form matrix C:

C =


#ke kel elb lb# lba ba# #kl kli lie ieb eb#

kelb 1 1 1 1 0 0 0 0 0 0 0
kelba 1 1 1 0 1 1 0 0 0 0 0
klieb 0 0 0 0 0 0 1 1 1 1 1


In this form matrix, the hash mark # represents a word boundary.

Instead of representing words’ forms by indicating which triphones are
present, we can set up form vectors that decompose a word’s form into its
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constituent syllables. In this study, again based on the results of Heitmeier
et al. (2021), we opted for bi-syllable cues that are not only a linguistically-
informed unit driving articulation (Levelt et al., 1999) but are also known
to capture certain suprasegmental effects (Heitmeier et al., 2021). Below, we
report results for simulations using these two ways of representing word form
information.

3.2 Constructing the semantic matrix

The row vectors of the semantic matrix S represent a word form’s mean-
ing numerically. Within the general framework of distributional semantics,
many algorithms are now available for deriving semantic vectors (known as
embeddings in computational linguistics) from corpora (Baroni et al., 2014;
Bojanowski et al., 2017; Joulin, Grave, Bojanowski, Douze, et al., 2016;
Joulin, Grave, Bojanowski, & Mikolov, 2016; Mikolov et al., 2013; Penning-
ton et al., 2014; Yang et al., 2017). In the present study, we explore two kinds
of semantic vectors: vectors that we constructed ourselves in a linguistically
informed way, which we call simulated vectors, and ready-made vectors that
were generated with fasttext (Joulin, Grave, Bojanowski, Douze, et al.,
2016; Joulin, Grave, Bojanowski, & Mikolov, 2016), which we call corpus-
based vectors.

3.2.1 Simulated vectors

The row vectors of the semantic matrix S represent words’ meanings in a
high-dimensional space. We can simulate such vectors using a random num-
ber generator. The idea underlying this approach is similar to the statistical
concept of ‘generating’ a statistical model: when we model a response vari-
able y as a linear function of x,

yi = a+ bxi + εi,

the hope is that we can generate a dataset that has all the properties of the
observed data, with as only difference the measurement errors εi. When sim-
ulating semantic vectors, we do the same: we set up a model that generates
semantic vectors that represent the semantic structure of words, apart from
word-specific or idiosyncratic aspects of words’ meanings (see, e.g., Booij,
1996; Sinclair, 1991a, for word-specific semantics of inherent inflection). For
our example lexicon, we generated 11-dimensional vectors, matching the di-
mensionality of the form matrix C. The result is a straightforward table
with real-valued numbers:
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S =


S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

kelb 0.46 4.16 8.50 −4.46 8.96 −4.11 8.42 9.21 −25.75 15.83 −14.93
kelba 0.61 −11.93 8.09 1.00 3.44 −11.98 8.72 −4.75 −33.29 10.39 −2.12
klieb 5.67 9.84 11.26 0.85 10.69 −4.24 0.21 4.81 −26.47 10.82 −11.76



However, if we use this method to create semantic vectors for each word
form, then, unavoidably, the resulting semantic vectors are almost completely
uncorrelated, which implies that the meanings of these words are understood
to be semantically entirely unrelated. When considering monomorphemic
words, such uncorrelated vectors are justifiable as a very first approximation
that is no worse (but also no better) than representing words’ meanings by
their own symbolic nodes. However, since inflected words share inflectional
features, we need to generate vectors that properly reflect that for instance
plurals are semantically more similar to other plurals, and less similar in
meaning than singulars.

Following Baayen et al. (2019), we generated semantic vectors of inflected
words by taking the (generated) vector of the lexeme and adding to it addi-
tional (generated) vectors, one for each inflectional function. For the Latin
noun horti (‘garden’, genitive singular), for instance, a vector for genitive
and a vector for singular are added to the vector of garden:

−−→
horti =

−−−−−→
garden +

−−−−−−−→
singular +

−−−−−−→
genitive.

For Maltese nouns, we considered several semantic features: whether a noun
is derived from a verb (e.g., participles), whether a noun has collective se-
mantics, whether a noun has masculine or feminine gender, and number.
The former two features were coded as privative oppositions, i.e., we added
a vector representing collective semantics to collective meanings, but left the
semantic vectors of all other nouns unchanged. For the latter two features, we
generated semantic vectors under the assumption that here we have equipol-
lent oppositions. For number, we thus decided to construct three semantic
vectors, one for singular meaning, one for dual meaning, and one for plural
meaning. For the forms kelb, kelba and klieb, the semantic vectors in our ex-
ample lexicon given above (matrix S) were obtained by adding the pertinent
inflectional vectors to the vectors of the lexemes, together with error vectors
representing words’ semantic idiosyncracies:

kelb:
−−−→
kelb +

−−−−−−−→
singular +

−−−−−−−−→
masculine + −→ε

kelba:
−−−→
kelb +

−−−−−−−→
singular +

−−−−−−→
feminine + −→ε

klieb:
−−−→
kelb +

−−−−−→
plural +

−−−−−−−−→
masculine + −→ε
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An alternative coding for number, that we did not pursue, would be to code
number as a privative opposition, with an unmarked singular and marked
dual and plural. However, as the broken plurals are formally not marked vari-
ants of their corresponding singulars, we opted for implementing equipollent
semantic vectors for number.

In summary, we generate semantic vectors for inflected forms by addition
of the primitive vectors for their constituent meanings. This additive process
is the way in which we approximate the conceptualization of the semantics
of inflected words.

3.2.2 Corpus-based vectors using fasttext

Although simulated vectors have been found useful for modeling morpholog-
ical processing in comprehension and production, they make the simplifying
assumption that all base word lexemes are semantically unrelated: their sim-
ulated semantic vectors are almost completely orthogonal. In addition, the
way in which inflectional semantics is accounted for may also require more
precision, see, e.g., Shafaei-Bajestan et al. (2022) for discussion of the seman-
tics of the English noun plural. Instead of working with simulated vectors,
Baayen et al. (2019) derived semantic vectors for both content lexemes and
inflectional functions such as singular and plural by first morphologically tag-
ging a corpus (in their study, the TASA corpus, Ivens & Koslin, 1991), and
then using a method from distributional semantics to construct semantic vec-
tors for both content words and for the inflectional (as well as derivational)
functions identified by the tagger.

Since computational resources for Maltese are limited, for the present
study, we complemented modeling using simulated vectors with modeling
using ready-made vectors that were created with fasttext (Joulin, Grave,
Bojanowski, Douze, et al., 2016; Joulin, Grave, Bojanowski, & Mikolov,
2016). Fasttext is an open-source library for text classification and repre-
sentation that offers the possibility to train a fasttext model on a set of
data or to download pre-trained vectors for various languages from https:
//fasttext.cc/docs/en/crawl-vectors.html. For this study, we opted for the
latter approach.

Modeling with fasttext vectors has as advantage, compared to simulated
vectors, that the LDL mappings will be able to take into account similar-
ities in meaning between content words, as well as inflectional similarities.
However, the algorithm underlying fasttext constructs semantic vectors for
words from semantic vectors of substrings of words by representing words
as a sum of their character n-grams (see Joulin, Grave, Bojanowski, Douze,
et al., 2016; Joulin, Grave, Bojanowski, & Mikolov, 2016, for details on how
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the vectors were created). As a consequence, it cannot be completely ruled
out that for inflected words the algorithm is capturing not only similarities
in meaning but also similarities in form.

We extracted fasttext vectors for the word forms in our data set using
the pre-trained 300 dimensional word-vectors that are available for Maltese at
https://fasttext.cc/docs/en/crawl-vectors.html. For 4056 of the 6511 nouns
in our dataset, fasttext vectors were available; of these 4056 word forms,
2266 are singulars and 1781 are plurals.

In order to obtain some insight in how well fasttext captures the differ-
ence between singular and plural meaning, we projected the 300-dimensional
fasttext space onto a 2-dimensional plane using Principal Components
Analysis. A scatterplot of nouns in the plane of the first two principal compo-
nents, color-coded for number and plural type, is shown in Figure 2. Interest-
ingly, we find distinguishable clusters of singulars (light green) and plurals
(orange, dark green), albeit with considerable overlap. In addition, sound
plurals (orange) and broken plurals (dark green) seem to dwell in somewhat
different semantic subspaces as well. This is confirmed by a Linear Discrim-
inant Analysis (LDA), which showed that a classification of singular, sound
plural and broken plural words using the first fifty principal components
reaches 85% classification accuracy. Apparently, number and type of plural
are to some extent intertwined with word meaning. This interaction of regu-
larity with semantics replicates a similar interaction for English regular and
irregular verbs reported by Baayen and Moscoso del Prado Mart́ın (2005).

Figure 3 addresses how well fasttext captures differences in gender. De-
spite substantial overlap of the clusters, Linear Discriminant Analysis, again
using the first fifty principal components, achieved a classification accuracy
of 79% and 70% for singular and plural words respectively. For the other se-
mantic features labeled in our dataset (concreteness, verbal noun, collective
noun), however, due to the fact that usually one level has overwhelmingly
more tokens than the other, no clustering in the semantic space could be
observed.

Above, we mentioned that fasttext looks “into” words by representing
word forms as a bag of n-grams, and that as a consequence, it cannot be ruled
out a-priori that similarities in meaning are confounded with similarities in
form. However, given the complexities of the Maltese plural forms, it is
unlikely that the clustering visible in Figure 2 is driven predominantly by
form similarity. Nevertheless, replication of this interaction of plural type
and semantics using, for instance, word2vec (Mikolov et al., 2013), would
strengthen the present conclusions for Maltese.
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Figure 2: Projection of fasttext semantic vectors onto a two-dimensional
plane. Number and plural types (sound and broken) are color-coded. Sin-
gulars and broken plurals cluster more to the right on PC1, whereas sound
plurals and broken plurals cluster more to the top on PC2.

3.2.3 Evaluating model performance

Before reporting how well the DL model approximates the Maltese noun
system, we need to explain how we evaluate model performance.

To evaluate comprehension, we calculated the correlations between a
given word’s predicted semantic vector (ŝi) and all the gold standard se-
mantic vectors in the lexicon (the row vectors of S). If ŝi has the highest
correlation with the semantic vector of the targeted word (si), comprehension
is considered successful. On the other hand, unsuccessful comprehension oc-
curs when the highest correlation is with another word than target word. It
should be noted that for homophones, we consider comprehension correct as
long as ŝi has the best correlation with one of the homophone meanings, e.g.
Maltese xark ‘shark’ /S5rk/ and xark /S5rk/ ‘a person who conducts busi-
ness shrewdly or acts for their own material benefit’ (note that there also is
a Semitic word to express ‘shark’ available in Maltese: kelb il-baèar). This is
because here we are modeling the processing of words in isolation. Given that
it is not possible to recognize a specific homophone meaning out of context,
we therefore adopted this lenient evaluation metric for comprehension.

With respect to production, as a first step, we generated for each word i
the predicted form vector ĉi from its semantic vector si. This predicted form
vector, however, only provides information about the amount of semantic
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Figure 3: Projection of fasttext semantic vectors onto a two-dimensional
plane, spanned by the first two principal components. The left panel plots
singular feminine (red) and masculine (blue) words, and the right panel plots
plural words. PC2 captures to some extent plurality, whereas PC1 captures
aspects of gender, resulting in somewhat differentiated clustering within num-
ber for feminine vs masculine nouns.

support for the sublexical cues (such as triphones or bi-syllables); it does not
inform us about the order in which well-supported cues have to be placed for
articulation. For ordering, the model makes use of the order information that
is implicit in the sublexical cues. Take triphones, for example. The triphone
kel can be followed by elb (to form the word kelb), given the identity of the
final diphone el in kel and the initial diphone el in elb. In the absence
of such overlap (e.g., for kel and lie), no sequential ordering is possible.
As the lexicon becomes larger, the number of possible triphone combinations
also grows, resulting in multiple candidate forms for a given form vector ĉi.
The candidate selected for articulation is chosen such that it best realizes
the meaning the speaker has in mind. Technically, this is accomplished by
first generating, for each candidate form ωj its predicted semantic vector ŝj,
and then selecting from these semantic vectors the one that is most similar
to the targeted semantic vector si that is to be expressed. In other words,
we generate the predicted semantic vectors for all candidate forms and select
as model prediction the form vector associated with the predicted semantic
vector that has the closest meaning to the targeted meaning (a process called
‘synthesis-by-analysis’ by Baayen et al., 2018).

For the simulations presented in this study, we used the JudiLing pack-
age, an implementation of LDL in the Julia language (Luo et al., 2021).
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For production, we used the learn paths function for ordering sublexical
features into words. This algorithm takes predicted form vectors, and learns
to predict at what position(s) in a word a sublexical cue occurs. In this way,
each of a word’s sublexical cues is associated with a number reflecting how
well it is supported for its position in the word. We refer to this number
as a cue’s positional support. Only cues with sufficient positional support
are taken into account when assembling the set of word candidates. What
counts as sufficient positional support is determined by a threshold value θ:
Only words with a positional support exceeding θ are taken into consider-
ation. More detail about the learn paths algorithm can be found in Luo
et al. (2021). In Section 5.4, we will show that the total amount of positional
support for a word’s cues is predictive for reaction times to Maltese plurals.

4 Modeling results

4.1 Evaluation on training data

With two cue representations (one using triphones and one using bi-syllables)
and two semantic representations (one using simulated semantic vectors and
the other using fasttext vectors), we have in total four models. For com-
parison, the dimension of the simulated vectors is set to 300, mirroring the
dimensionality of the fasttext vectors. It should be noted, however, that
since fasttext vectors are not available for all the word forms in the dataset,
we therefore worked with a smaller dataset (n = 4056) when using fasttext.
Comprehension and production accuracies of the four models are presented
in Table 3. For comprehension, bi-syllable as cues yielded higher accuracies
than triphones as cues, regardless of the kind of semantic representation.
With respect to production, we again see an overall advantage of bi-syllable
cues. In addition, while the difference between vector types is not large for
bi-syllable cues, with triphone cues, model performance with simulated vec-
tors is a lot worse than that with fasttext vectors. Given that there are
more bi-syllable cues than triphone cues (9821 vs. 4272 for the full dataset),
the absence of sufficient semantic structure in simulated vectors (e.g., all
lexeme and inflectional features are orthogonal to one another) seems to be
potentially harmful when the form space is not well differentiated. On the
other hand, the model may be overfitting when bi-syllable cues are used. We
return to this possibility below.

Given the high accuracy of all four models, we can conclude that the
model generally has a good memory for understanding and producing Maltese
plurals. However, we do not know how the model performs with respect to
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inflected forms that it has not encountered during training. In other words,
we do not yet know to what extent the model is productive. To test this,
we ran the model on a subset of the data that was not used during training.
The results of this process are reported in the following section.

comprehension production
simulated fasttext simulated fasttext

triphone 93.1% 95.6% 82.9% 91.1%
bi-syllable 99.8% 99.9% 99.0% 96.3%

Table 3: Model performance for comprehension (left) and production (right)
for four combinations of cue and semantic representations. For production,
the threshold was set to 0.005 for both the simulated and the fasttext

models.

4.2 Evaluation on held-out data

The question of whether our model is productive for Maltese is of considerable
theoretical interest because the noun system of Maltese is not straightfor-
wardly regular. Although some rules can be formulated, indicating that the
system is not just random, the many patterns for broken plurals and the wide
variety of plural exponents characterize a system for which full productivity
cannot be expected. It would actually be strange and worrisome if compu-
tational models were to be able to predict unseen forms with close to 100%
accuracy. Since regularity is generally seen as a prerequisite for productivity,
the Maltese noun system is perhaps best characterized as semi-productive.
This possibility receives support from the observation that native speakers
of Maltese are often unsure about what the proper plural of an unknown or
infrequent word might be, as indicated by the production study in Nieder,
van de Vijver, et al. (2021a). In the light of these considerations, a substan-
tial drop in prediction accuracy is expected for held-out data, compared to
the accuracy for the training data.

We also expect to find that for held-out data, production accuracy will be
somewhat lower than comprehension accuracy. This is due to the ‘synthesis-
by-analysis’ approach of the model: to select a candidate path for produc-
tion, the LDL model is using the results from the comprehension model (see
Baayen et al., 2018; Heitmeier et al., 2021, for further details). The familiar
asymmetry between production and comprehension (Boersma, 1998; Pater,
2004; Smolensky, 1996) was already visible in the results for the training
data (see Table 3), and we anticipate it will be present, and perhaps more
pronounced, for the held-out data.
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To examine model productivity, we held out 10% of the words in our
dataset as testing data. The held-out words were selected based on the
criterion that all the sublexical cues and inflectional features of the words
have already been available to the model during training. Furthermore, the
held-out words were constrained to have lexemes that occurred in the training
data. In addition, we used the smaller dataset, instead of the full dataset, to
enable comparisons between simulated and fasttext vectors.

The testing data contained 174 singular forms and 205 plural forms. Of
the plural forms, 192 were sound plurals, 12 were broken plurals, and one
was a suppletive form. During training, bi-syllable cues consistently out-
performed triphone cues, both with simulated semantic vectors and with
fasttext vectors. This indicates that the models with bi-syllable cues, which
outnumber triphone cues, are not overfitting. In what follows, we only report
results obtained with bi-syllables.3

For comprehension, simulated vectors performed better than fasttext,
with an accuracy at 77.8% and 63.6% respectively. When the top 10 candi-
date meanings are considered, comprehension accuracy increases up to 85.5%
and 96.3%. A closer inspection of the comprehension errors reveals a qual-
itative difference between the two kinds of semantic vectors. For simulated
vectors, the majority of the errors (91.7%) involve lexemes, i.e., the recog-
nized form has a different lexeme than the targeted form. For fasttext

vectors, on the other hand, only about half of the errors are lexeme errors.
The other half involves number errors, e.g., the singular form minuta ‘minute’
is recognized as its plural counterpart minuti. The reduced number of errors
for held-out data in the model with simulated vectors suggest the orthogonal-
ity of the number features (singular, dual, plural) in the simulated semantic
space is beneficial for generalization. However, the simulated vectors run the
risk of oversimplifying the true complexity of plural semantics in Maltese
(see, e.g., Shafaei-Bajestan et al., 2022, for English noun plurals).

For production, model performance with simulated and fasttext vectors
is similar, at 68.3% and 64.4% respectively4. With simulated vectors, the
correct form appears among the top 10 candidates for 72.8% of the held-

3The triphone models with simulated and fasttext vectors are provided in the sup-
plementary material. The overall trend is similar, except that both comprehension and
production accuracies are lower.

4For production of the held-out data, we lowered the threshold from 0.005 to 0.0005,
and also for each word form, we allowed two cues to have support lower than the set
threshold. This adjustment was motivated by the fact that some of the cues, due to their
low frequency of occurrence in the training dataset, are not encountered often enough
to be properly learned, and therefore require a more lenient criterion for acceptance as
candidate cues for articulation.
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out words; with fasttext vectors, this number increases to 90%. Table 4
displays the comprehension and production results for the held-out data:

comprehension production
simulated fasttext simulated fasttext

top 1-candidate 77.8% 63.6% 68.3% 64.4%
top 10-candidates 85.5% 96.3% 72.8% 90%

Table 4: Model performance for comprehension (left) and production (right)
for the held-out data. Rows indicate if only the predicted meaning (top 1-
candidate) or the correct meaning among top 10-candidates was considered
for the evaluation.

The majority of correctly produced forms belong to singular and sound
plural forms, for both kinds of semantic vectors. Interestingly, in the case
of broken plural forms we observe a different pattern: Among the 12 bro-
ken plural forms in the held-out dataset, the model using simulated vectors
only produced one form correctly, while the model with fasttext vectors
produced all 12 forms correctly. This may be due to the clustering of broken
plurals in semantic space as gauged with fasttext (cf. Figure 2).

Further analyses on the production errors reveal that the type of errors
that are made by simulated and fasttext models are also qualitatively dif-
ferent. Overall, we identified seven different error types for the production
models that are shown in Table 5 below.

error type simulated fasttext target target lexeme predicted predicted lexeme
incorrect word 84 11 ġar neighbor brejk brake
wrong affix 15 2 satellita satellite satellitiku n.a.
phonetically close 10 68 mera mirror mara woman
singular 5 29 delegati delegates delegat delegate
plural 2 25 minuta minute minuti minutes
alternative plural 2 0 qlub cores qalbiet cores
missing diacritic 2 0 rivalità rivalry rivalita n.a.
sum 120 135

Table 5: Distribution of production errors from models with simulated and
fasttext vectors along with examples for target word forms and their lex-
emes and predicted word forms and their lexemes (n.a. is given as lexeme
for nonce-words).

In total, the two tested models produced 120 and 135 errors respectively.
For most of the errors that the simulated model makes, 84 of 120 (70%)
compared to 11 of 135 (8%) for the fasttext model, the predictions are far
off from the targeted word forms. We labeled this category “incorrect word”.
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While some of these incorrect word forms are actual Maltese words, e.g. the
model predicted ġar ‘neighbor’ for brejk ‘brake’, in some cases LDL produced
new word forms, e.g. the pseudo-word liku for ballu ‘dance (sg)’.

For 15 of 120 (12.5%) errors in the simulated model and 11 of 135 (1.5% )
in the fasttext model, the models predicted a wrong affix. For example, the
word satellita ‘satellite’ has the sound plural form, satelliti. While the target
form was satellita, the models produced the non-existing form satellitiku
using a wrong affix or additional phonological material, in this case -ku, for
their predictions.

We labeled 10 of 120 (8.3%) errors in the simulated and 68 of 135 (50.4%)
errors in the fasttext model as phonetically close. In these cases, LDL pre-
dicted a word form that is phonetically similar to the target word form, e.g.
mera ‘mirror’ instead of mara ‘woman’. For the fasttext model, these kind
of errors concern the majority of all errors, thus highlighting the qualitative
difference of the models’ prediction again.

Other errors, 5 and 2 of 120 (4.2% and 1.6%) for the simulated model
compared to 29 and 25 of 135 (21.5% and 18.5%) for the fasttext model
involve mixing up singular and plural forms. For instance, the models pre-
dicted the singular delegat for delegati ‘delegates’. Likewise, in another case
the target word form was minuta ‘minute’ but the models predicted the plural
form minuti ‘minute’ instead.

In a few cases, 2 of 120 (1.6%) errors for the simulated model (please note
that this error did not occur at all in the fasttext model), LDL predicted an
alternative plural form for a word that has multiple plural forms in our data
set, e.g. qalba ‘core (sg)’ has three plural forms, one sound plural (qalbiet) and
two broken plurals (qlub and qliebi). The testing data contained the broken
plural form qlub, and the model predicted the sound plural qalbiet instead.
This attraction to sound plurals is in line with the finding of a production
study by Nieder, van de Vijver, et al. (2021a), in which native speakers tend
to use frequent sound plural patterns for novel words.

The last minor group of errors, 2 of 120 (1.6%) of all errors in the sim-
ulated model (again, please note that this error did not occur at all in the
fasttext model), concerns a missing diacritic. In two cases, the LDL pre-
diction did not contain the diacritic of the target word form, e.g. rivalita for
rivalitá.

4.3 Discussion

The explorations of Maltese noun inflection with LDL as computational en-
gine for mappings between form and meaning clarified that model perfor-
mance is excellent with the training data. For the held-out data, the model
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understands and produces unseen form with an accuracy around 70%, an
accuracy that actually is surprisingly high for a noun system that is far from
straightforwardly regular in many ways, and that can be expected to only
be semi-productive. Compared to previous modeling results obtained within
the framework of Word and Paradigm morphology (Nieder, Tomaschek, et
al., 2021), accuracy is much higher than that of an Encoder-Decoder deep
learning model, but lower than the exemplar-based model implemented with
TiMBL. The TiMBL model, however, was given a much simpler task, namely,
to predict classes of form changes, including classes bringing together many
low-frequency patterns of change. In comparison to data from real speak-
ers, the LDL model results on held-out data reflect the uncertainty of native
speakers when it comes to infrequent words: Nieder, van de Vijver, et al.
(2021a) asked participants to provide plural forms for given singulars, and
observed that participants often were not able to provide the correct plural
for existing infrequent singulars.

One modeling result is especially intriguing, namely, that to properly
produce broken plurals for held-out data requires empirical, corpus-based
vectors rather than simulated vectors. Conversely, simulated vectors outper-
form fasttext vectors when it comes to sound plurals. These observations
suggest that there is a stronger isomorphism between the form space and the
semantic space for the broken plurals.

We conclude that the theory of the Discriminative Lexicon, as a compu-
tational formalization of Word and Paradigm Morphology, provides a useful
framework for predicting what forms are possible for listeners to understand,
and what forms are possible for speakers to produce.

In what follows, we address the question of whether the way in which the
discriminative lexicon model formalizes listening and speaking (admittedly at
a high level of symbolic abstraction, especially when it comes to the represen-
tation of words’ forms) can contribute to our understanding of human lexical
processing. In the next section, we therefore examine whether measures de-
rived from the model can contribute to enhancing statistical models fitted
to response latencies in a primed lexical decision experiment with Maltese
nouns that is reported in Nieder, van de Vijver, et al. (2021b).

5 Modeling Maltese priming reaction times

5.1 Maltese priming study

Nieder, van de Vijver, et al. (2021b) used a cross-modal priming paradigm
with a lexical decision task to investigate the lexical storage and processing
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of Maltese sound and broken plurals.
In their study, they included 144 written singular targets from a Maltese

noun list that appeared in one of two priming conditions: auditory primes
were either 1) corresponding plural prime word forms, e.g. klieb - KELB ‘dogs
- dog’, or, 2) phonologically and semantically unrelated control prime word
forms that show the same plural suffix or pattern like the corresponding plural
word, e.g. bliet - KELB ‘cities - dog’. They created two lists to prevent the
same singular target appearing in both conditions for the same participant.
In addition, Nieder, van de Vijver, et al. (2021b) included 144 nonce singular
fillers created from existing Maltese singulars by changing the offset of the
word forms (and thus keeping an initial phonological overlap with existing
words). These nonce fillers were presented with the corresponding plural
primes of the existing singulars that were used to create nonce words with,
e.g. klieb - KELT ‘dogs - nonce filler’.

To investigate a possible frequency effect, Nieder, van de Vijver, et al.
(2021b) reduced the Maltese plural variety substantially (see table 1 for an
exhaustive list of the Maltese plural suffixes and patterns again) by including
two frequent sound plural suffixes (-i and -ijiet), and two infrequent sound
plurals (-a and -at), and two frequent broken plural templates (CCVVCVC,
broken A and CCVVC, broken C) and two infrequent broken plural templates
(CCVjjVC, broken D and CCVVCV, broken E). Their choice of including
these plurals was motivated by the frequency results of a production study
reported in Nieder, van de Vijver, et al. (2021a).

The results of the cross-modal priming study show no significant effect
for plural type (sound vs. broken), but instead Nieder, van de Vijver, et al.
(2021b) report that the reaction times of their participants were significantly
influenced by the frequency of suffixes and patterns as well as by the word
frequency of the singular targets. They conclude that Maltese sound and
broken plurals are processed in the same way with pattern frequency being
an important factor for lexical access.

5.2 Dataset

For exploring the usefulness of our computational model for understanding
actual lexical processing, we re-analyzed the dataset from Nieder, van de Vi-
jver, et al. (2021b). It contains 7885 observations (after removal of incorrect
answers, practice trials and outliers) from fifty-nine participants.

In the following, when using the frequency of suffixes and templates as
a variable for the model, we will use the terms “pattern frequency” and
“patterns” to refer to both suffixes and templates. For the present study, we
only used the reaction times for corresponding singular-plural pairs, omitting
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the control condition that was present in the experiment. Thus, to take the
examples given above, we only included reaction times for klieb - KELB
‘dogs - dog’ but not for bliet - KELB ‘cities - dog’. This left us with 3995
observations. We then removed all words for which we did not have fasttext
semantic vectors, resulting in a dataset with in all 2951 observations.

5.3 A baseline model

Extending the analyses of Nieder, van de Vijver, et al. (2021b), we predicted
response times with plural type (TYPE), whether the plural form is sound
or broken, and pattern frequency (PFREQ), whether the plural pattern is
frequent or infrequent (cf. Table 1). In addition, we also included three lexi-
cal predictors pertinent to target words: frequency (FREQ), neighborhood
density (ND)5, and word length (LEN), measured in characters per word.
In order to detect potential non-linear trends of the numeric predictors, we
made use of the generalized additive mixed model (GAMM) provided by
the mgcv package (v.1.8-36, Wood, 2017). The RTs (in seconds) were first
inverse-transformed times -1 (so that small numbers still indicate fast RTs),
and all the numeric predictors were log-transformed. In the model we allowed
the two categorical factors to interact, and included by-subject random in-
tercepts.

Word length did not contribute to improving model fit, and is therefore
not considered in the analyses to follow. This is perhaps unsurprising, given
that word length is highly correlated with neighborhood density (r = 0.75)
and frequency (r = −0.3). A summary of the resulting model is presented
in Table 6.

For this smaller dataset, re-analyzed with a GAMM instead of an LMM,
and with ND as additional predictor, there is no evidence that RTs differ for
broken and sound plurals, replicating the findings of Nieder, van de Vijver,
et al. (2021b) for the original full dataset. The coefficient of pattern fre-
quency indicates that plural primes with infrequent patterns induced longer
response times compared to plural with frequent patterns. Figure 4 presents
the partial effects of frequency and neighborhood density on RTs. The lines
in the two plots center around zero because the intercepts and the adjust-
ments of categorical predictors (part A in Table 6) are not included in the
predictions: it is the effect of the predictor by itself that is shown. For fre-
quency, the effect is nearly linear, but levels off for the highest-frequency
words, a pattern often observed for word frequency in lexical decision tasks

5Neighborhood density is calculated on the basis of the vocabulary of fasttext, the size
of which is about 120 thousand words, with punctuation and hyphenated words excluded.
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A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -1.7891 0.0380 -47.1069 < 0.0001
TYPEsound 0.0158 0.0178 0.8915 0.3727
PFREQinfrequent 0.0448 0.0179 2.5050 0.0123
TYPEsound:PFREQinfrequent -0.0198 0.0287 -0.6877 0.4917

B. smooth terms edf Ref.df F-value p-value
s(FREQ) 2.6296 3.1974 16.5970 < 0.0001
s(ND) 3.4840 3.8494 6.7397 < 0.0001
s(participant) 56.3240 58.0000 35.5194 < 0.0001

Table 6: Summary of a GAMM fitted to inverse-transformed RTs (-
1/RT), with plural type, pattern frequency, target frequency and
neighborhood density as fixed-effect predictors, and by-participant ran-
dom intercepts.

(see, e.g., Baayen et al., 2006).6 The effect of neighborhood density, on the
other hand, is much more wiggly, and almost U-shaped. With the increase of
neighborhood density, RTs first decrease and then increase. This U-shaped
pattern suggests that participants responded faster for more probable values
of ND as found in the center of the ND distribution, and responded more
slowly for atypical values of ND, as found for atypically low and atypically
high values of ND.

5.4 Predicting reaction times with LDL predictors

For predicting reaction times with measures based on discriminative learn-
ing, we opted for using the model with bi-syllables as cues, and fasttext

word embeddings as semantic vectors. Bi-syllables were used as cues due to
the better performance for these cues in training (see Table 3 again). We
used fasttext vectors because, unlike simulated vectors, as we demonstrated
above, they are remarkably sensitive to semantic differences between stems,
number, plural types (broken vs. sound), and gender. Moreover, recall that
the model using fasttext vectors did not only produce qualitatively differ-
ent production errors (see table 5 again) but, contrary to the model using
simulated vectors, managed to arrive at correct predictions for all broken
plurals in the held-out data.

6Model fit can be further improved by including by-target random intercepts. However,
due to very high concurvity, this model becomes uninterpretable: The covariates do not
explain anything that is not already explained by the word-specific random intercepts. In
this model, as well as in the model reported below, we therefore did not include by-target
random intercepts.
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Figure 4: Effects of frequency and neighborhood density on RTs, indicated
by the wiggly line. The blue area represent one standard error away from
predictions. The rugs at the bottom indicate datapoint positions.

There are several potential measures that can be derived from an LDL
model (see Chuang & Baayen, 2021, for an overview). We found two mea-
sures particularly useful for understanding Maltese unmasked primed lexical
decision latencies, one measure quantifying how well primes’ forms can be
learned, and the other measure quantifying how closely the meaning of the
prime plural already approximates the meaning of the target singular.

First consider the form measure, henceforth labeled prime support. The
measure is defined as the sum of the positional semantic supports that the
bi-syllable cues of a given plural prime word receive. By way of example,
the word trabi, the plural form of tarbija (sg.f.) ‘baby’, contains three bi-
syllable cues: #.tra, tra.bi, and bi.#, at positions 1, 2, and 3, respec-
tively (“.” denotes syllable boundaries). As described in Section 3.2.3, the
learn paths function in the JudiLing package calculates, for each cue po-
sition, the amount of support that a bi-syllable cue of the target word re-
ceives. That is, given the semantics of trabi, the positional support measure
quantifies how certain the model is that #.tra should occur at position 1,
tra.bi at position 2, and bi.# at position 3. For this example, the posi-
tional supports that the three bi-syllable cues receive are 0.25, 0.20, and 0.28,
respectively. The prime support measure sums these three individual sup-
ports (i.e., 0.25 + 0.20 + 0.28 = 0.73). The larger the prime support is, the
more predictable a prime word’s form is given its semantics, and the better
its form is learned. This measure is motivated by two considerations. First,
according to the motor theory of speech perception (Galantucci et al., 2006;
Liberman & Mattingly, 1985), understanding the auditory prime necessar-
ily involves internal production. Accordingly, the prime support measure,
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which captures the extent to which a word’s temporally ordered triphones
are supported by that word’s semantics, is an integral part of the process of
‘analysis by synthesis’. Empirical support for this measure is provided by
Chuang, Kang, Luo, et al. (2021), who observed that the total positional
support for Mandarin words was a co-determinant of their spoken word du-
rations. Second, within the theory of the discriminative lexicon, internal
comprehension is assumed to guide production (the previously introduced
‘synthesis-by-analysis’ approach, Baayen et al. (2018)). In this approach,
comprehension and production are understood as more interlocked and in-
terwoven than in classical models in which production and perception are
allocated to encapsulated modules.

The second measure, henceforth labeled pre-activation distance, ad-
dresses the relation between plural prime words and their corresponding sin-
gular target words. It gauges the extent to which listening to a prime plural
word semantically pre-activates (or “primes”) the meaning of the target sin-
gular word. The pre-activation distance is defined as the Euclidean
distance between the predicted semantic vector of a prime word and the gold
standard semantic vector of its target word. A large value of this measure
indicates that the predicted meaning of the plural prime word is far away in
semantic space from the meaning of the singular target word. Conversely, a
small pre-activation distance indicates that the prime word already closely
approximates the meaning of the target word. This measure is inspired by
a similar measure proposed in Baayen and Smolka (2020) on the basis of a
näıve discrimination learning network, prime-to-target pre-activation,
which calculates the extent to which a target word is already activated by
the cues of the prime word. The current measure is modified to further take
the semantics of prime and target words into account.

Similar to the baseline model, we fitted a GAMM to the inverse-transformed
RTs with by-participant random intercepts, but this time with prime support
and pre-activation distance as predictors. In addition, we asked a GAMM to
predict the effects of both measures for sound and broken plurals separately,
given that, as shown in Figure 5, in contrast to frequency and neighborhood
density (top panel), a plural type difference emerges in the model and is
naturally captured by the LDL measures (bottom panel), though the differ-
ence is more obviously pronounced for prime support than for pre-activation
distance. The summary of the resulting model is presented in Table 7, and
Figure 6 visualizes the partial effects of the two measures for sound and
broken plurals.

For prime support (top panel), if we focus on where most datapoints are
(indicated by rugs at the bottom of each figure), for both sound and broken
plurals, the effect emerges as roughly inverse-U shaped: with increasing prime
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Figure 5: Boxplots of classical measures (frequency and neighborhood den-
sity, top panel) and LDL measures (prime support and pre-activation dis-
tance, bottom panel).
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Figure 6: The effects of prime support (upper panel) and pre-activation

distance (lower panel) on RTs for sound (left column) and broken (right
column) plurals. The rugs at the bottom of each sub-figure indicate datapoint
positions. The three dotted vertical lines in each sub-panel denote the first,
second, and third quartiles.
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A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -1.7647 0.0382 -46.1578 < 0.0001
TYPEsound -0.0087 0.0205 -0.4236 0.6719
B. smooth terms edf Ref.df F-value p-value
s(primeSupport):TYPEsound 3.8939 4.6880 10.5593 < 0.0001
s(primeSupport):TYPEbroken 4.1001 5.0081 4.1433 0.0009
s(preActDist):TYPEsound 3.5923 4.4435 1.6615 0.1400
s(preActDist):TYPEbroken 2.6150 3.2798 6.8640 0.0001
s(participant) 56.3306 58.0000 35.6625 < 0.0001

Table 7: Summary of a GAMM fitted to inverse-transformed RTs, with
the by-type smooths for prime support and pre-activation distance as
fixed-effect predictors, and by-participant random intercepts.

support, RTs first increase and then decrease. Interestingly, the peaks of the
inverse-U shape effects for both plural types coincide with their respective
first quartile (25th percentile). This suggests that for three quarters of the
data, plurals that can be well predicted by semantics prime their singulars
to a larger extent, resulting in shorter RTs. This pattern of results is in line
with the effect of prime-to-target pre-activation as reported in Baayen
and Smolka (2020). The trend, however, reverses for 25% of the plurals that
are least learnable from their semantics. The inverse U-shaped curves suggest
a trade-off between not knowing the prime’s pronunciation, which makes it
more like a pseudo-word, and knowing the prime’s pronunciation well, which
makes it more like a real word and thus enabling faster responses. How these
two forces are balanced, and why the slowest responses are found at the first
quartile, is unclear to us.

With respect to pre-activation distance, the effect is only seen for bro-
ken plurals. It is nearly linear with RTs becoming shorter as pre-activation
distance increases. At first sight, the trend is puzzling, as one might have ex-
pected that if the prime fails to pre-activate the target, reaction times should
be longer, but in reality, they are shorter. To make sense of this effect, we
need to take a step back and have a critical look at the priming paradigm.
Priming is often understood as involving facilitation of lexical access to the
target. However, in general, compared to an identity baseline, primes typ-
ically give rise to longer instead of shorter response latencies. Primes are
only facilitating when they are compared to an unrelated control baseline.
In other words, unrelated primes are more disruptive than related primes,
and related primes are more disruptive than identity primes.

The interpretation of primes as disrupting and interfering with normal
lexical processing is supported by the experiments reported by Libben et
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al. (2018). Their study made use of primed visual lexical decision, with
two-constituent compounds as target words and one of their constituents
as primes. They observed longer reaction times for more frequent primes,
in combination with the usual shorter reaction times for more frequent tar-
get compounds. In other words, their experiment indicates that the more
frequent a prime is, the more it disrupts the processing of the target (see
also Andrews, 1997; Forster & Hector, 2002, for interferences in priming and
lexical retrieval).

With respect to the present experiment, a smaller pre-activation distance
likewise bears witness to a similar disruptive effect of the prime. Since the
plural and singular of a word are semantically highly similar in the first
place, they are thus highly confusable and render deciding on the target’s
lexicality in general difficult. And as the prime and target are semantically
more similar, the smaller the semantic distance of a prime to its target, the
slower participants were able to make a lexicality decision, thus leading to
longer RTs. Such a disruptive effect is more pronounced in broken plurals.
The presence of a plural suffix in sound plurals (cf Table 1) possibly allevi-
ates processing difficulties that arise when prime and target are very similar
in meaning. Under close semantic proximity, sound plurals, thanks to the
presence of a suffix, are easier to distinguish from their targets than broken
plurals, which are more likely to be similar to simple words.

5.5 Discussion

How does the GAMM with LDL predictors compare to the baseline model
with pattern frequency, target frequency and neighborhood density as predic-
tors? To address this question, we compared Akaike’s Information Criterion
(AIC) for the two models. The AIC of the baseline model is 1900, and that
of the LDL-based model is 1880. The corresponding evidence ratio is 22026,
indicating that the LDL-based GAMM is 22026 times more likely than the
baseline model to minimize the information loss.

We did not include target frequency as a predictor in the GAMM with
prime support and pre-activation distance, for two reasons. First, within the
framework of the discriminative lexicon, there are no word units with which
frequency counts can be associated. Second, for modeling, we have made
use of the multivariate multiple regression method for estimating weights,
which represents the endstate of learning. At the endstate of learning, for
which all token frequencies have increased to infinity, frequency effects are
no longer present (see Heitmeier et al., 2021; Shafaei-Bajestan et al., 2021,
for a detailed discussion).

Frequency of occurrence does come into play when incremental learning
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algorithms are used. For the present study, we did not explore incremental
learning, for two reasons. First, for representing words’ meanings, we would
need incrementally updated semantic vectors. Unfortunately, incrementally
updated fasttext vectors are not available for Maltese. Second, although
incremental updating of the network is implemented in the JudiLing package
for comprehension, it is not fully implemented for production. Developing a
fully-fledged incremental version of the model is a target for further research.
We do note, however, that when target frequency is added as predictor to the
GAMM with LDL predictors, while prime support remain significant, pre-
activation distance does not, and the effect size of target frequency reduces
substantially. This is due to the high correlation between pre-activation
distance and target frequency (r = 0.62), resulting in high concurvity and
rendering the effects uninterpretable. Similarly, concurvity increases with
neighborhood density added to the LDL model, as it is also highly correlated
with pre-activation distance (r = −0.63).

It is noteworthy that in the baseline model with classical predictors, the
type of prime was not supported as a predictor. In the model with LDL
measures as predictors, an effect of the prime is detected, albeit not the
originally anticipated effect of priming by plural type. In fact, according
to this model, both a property of the prime (its ‘pronouncability’), and the
semantic relation of the prime to the target (gauged with preActDist), are
the crucial predictors for participants’ lexicality decision making.

6 General Discussion

We conclude this study with a discussion of the new insights that our results
bring to morphological theory on the one hand, and the limitations of our
approach on the other.

The semi-productivity of the Maltese plural poses a challenge for compu-
tational modeling. Any system, whether based on rules, analogy, or machine
learning, needs to strike a balance between providing a good memory for
the forms in use, and doing justice to the extent that the system is pro-
ductive. We have shown that the Discriminative Lexicon (DL) model finds
such a balance: it provides an accurate memory for both the comprehen-
sion and production of known words, and it also performs reasonably well
when given the task to produce or understand novel, unseen forms. Given
the semi-productivity of the Maltese plural, it is actually surprising how well
prediction for unseen words works. This finding supports earlier descriptive
studies that have called attention to substantial regularities in the Maltese
plural system (Mayer et al., 2013; Nieder, van de Vijver, et al., 2021a; Schem-
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bri, 2012).
The theory of the DL currently does not include algorithms implementing

decision making in experimental tasks such as lexical decision. Nevertheless,
some headway can be made by incorporating measures derived from the the-
ory as predictors in statistical models for experimental measures such as reac-
tion times. Two such measures, one gauging how well we know a word’s form,
and the other assessing how closely the meaning of the prime approximates
the meaning of the target, were found to improve the quality of a GAMM
model fitted to the reaction times in a primed lexical decision task. The re-
sulting model forced us to reconsider how to understand priming. Instead of
understanding primes as facilitating lexical access to the target, primes may
actually be disruptive. Among highly semantically relevant singular-plural
word pairs, primes that are less similar in meaning to the target give rise to
reduced interference. It should be kept in mind, however, that these results
are tentative, based as they are on a post-hoc reanalysis, using exploratory
data analysis, of the experiment reported earlier by Nieder, van de Vijver, et
al. (2021b), and further replication studies will be essential for consolidating
the present findings.

From this set of results, we conclude that the algorithm of linear discrim-
inative learning, previously tested on Latin (Baayen et al., 2018), Estonian
(Chuang et al., 2020), English (Chuang, Vollmer, et al., 2021), German (Heit-
meier et al., 2021), Indonesian (Denistia & Baayen, 2021), Kinyarwanda (van
de Vijver et al., 2021), and Korean (Chuang, Kang, Luo, et al., 2021), also
provides a fruitful window on non-concatenative morphology.

The approach to the Maltese plural system that we have worked out in
this study, which is a computational implementation of Word and Paradigm
morphology (Blevins, 2016), differs from previous studies using computa-
tional modeling in that both production and comprehension are modeled.
Instead of defining the task of morphological theory as providing a formal
mechanism specifying what sound sequences are possible meaningful words,
the DL framework explicitly addresses two challenges, first, to predict what
possible forms are, given their meanings; and second, to predict what pos-
sible meanings are, given their forms. The present study is limited by the
fact that the form representations that we made use of are based on abstract
sublexical features such as letter or syllable n-grams, and it is currently an
open question how the model will perform when, for instance, features de-
rived from the acoustic signal are used (see Shafaei-Bajestan et al., 2021, for
an exploration).

Our study also contributes to the theory of morphological productivity.
Productivity is usually investigated for specific affixes. We have shown that
we can assess the productivity of a whole system by inspecting how well the
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model’s networks generalize to understanding and producing unseen forms.
Several researchers have suggested that the productivity of rival affixes (e.g.,
-al, -ion, -ment) should be assessed jointly (Corbin, 1983; Wurzel, 1970;
Zwanenburg, 1983). The present model for Maltese provides one way in
which this suggestion can be implemented: many different suffixes for sound
plurals, and many different templates for broken plurals,are all considered
jointly.

Inspection of the semantics of Maltese singulars and plurals, using dis-
tributional semantics, clarified that the broken plurals, sound plurals, and
singulars form partly overlapping but distinguishable clusters in semantic
space. Furthermore, feminine and masculine nouns show some clustering
in semantic space that is slightly different for singulars and plurals. These
results show that the semantic vectors of inflected words have considerably
more structure than expected in approaches in which plural inflection realizes
a fixed morpho-syntactic feature. As the semantic vectors that can be simu-
lated for inflected words with the JudiLing package implement fixed shifts
for a given morpho-syntactic feature, it is clear that such vectors capture
only part of the true complexity and richness of the semantics of inflected
words. Simulated vectors construct a useful scaffolding for inflected words’
semantics, sufficient to set up effective mappings between form and meaning,
but insufficient for modeling the details of how form and meaning interact.

Since all models, including the one we presented in this paper, are ideal-
izations, it is useful and necessary, we think, to reflect upon the differences
between our model and native speakers of Maltese. The input to our model is
a list of words and their semantics, conceptualized as embeddings. The model
assumes that these forms and meanings are correct for any given speaker, but,
of course, this is an idealization given that actual usage varies across speakers
(Bybee, 2010; Sinclair, 1991b). Native speakers reported to us that they fre-
quently hear other speakers use plurals that they had not heard before, but
find understandable nevertheless (J. Nieder, personal communication, 2019).

Whereas native speakers learn continuously and incrementally, we have
modeled the endstate of learning, of a learner with perfect memory and
undivided attention to nouns alone. Obviously the existence of such a learner
is a myth. It is possible to model incremental learning in LDL, but we do
not have a sufficient amount of learning data of Maltese nouns to reliably
model their learning. We leave this open for further research.

Our model represents a single (mythical) learner, but in reality there
are individual differences between learners. Milin et al. (2017), for example,
found evidence from skilled Russian readers that some readers accelerated as
they progressed in a new text, whereas others slowed down. They connected
this behavior to individual differences in the use of perceptual cues. Such in-

38



dividual differences in the use of cues would also affect acquisition of Maltese
nouns. This could be modeled by learner-specific thresholds determining the
number of candidate forms a speaker is willing to take into consideration (see
also Chuang et al., 2020).

Keeping its limitations in mind, we contend that our model is useful as
a quantitative tool for investigating high-level properties of human learning.
Our model not only goes beyond predicting possible forms given another
form, as is usual in computational models of morphophonology, but also
provides model-based measures that predict human processing.

We conclude with noting that the LDL learning engine of the DL model
strives for simplicity and interpretability. Formally, this engine carries out
multivariate multiple linear regression on form and meaning. The assumption
that mappings between form and meaning are linear undoubtedly involves
substantial simplifications. Nevertheless, as illustrated in the present study,
this simple approach already works surprisingly well, suggesting that the
noun system of Maltese itself is also roughly ‘linear’. Because the architec-
ture of the network is fixed, and because there are very few hyperparameters
(such as the threshold parameter that has to be set for production), the
performance of the model is almost completely determined by the represen-
tations selected by the researcher for representing form and meaning, and
the data. This, we think, makes the model especially useful as a tool for
linguistic analysis.

Data Availability Statement

The data that support the findings of this study are openly available at
(anonymous view-only link):
https://osf.io/rxsbu/?view only=73d7c8d1fb854592a293d891383d7e7a.
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Chuang, Y.-Y., Lõo, K., Blevins, J. P., & Baayen, R. H. (2020). Estonian Case
Inflection Made Simple. A Case Study in Word and Paradigm Mor-
phology with Linear Discriminative Learning. In Körtvélyessy, Livia
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Mirković, J., MacDonald, M. C., & Seidenberg, M. S. (2005). Where does
gender come from? evidence from a complex inflectional system. Lan-
guage and cognitive processes, 20, 139–167.

Mitchell, J., & Lapata, M. (2008). Vector-based models of semantic compo-
sition. ACL, 236–244.

Nieder, J., Tomaschek, F., Cohrs, E., & van de Vijver, R. (2021). Modelling
Maltese noun plural classes without morphemes. Language, Cognition
and Neuroscience. https://doi.org/10.1080/23273798.2021.1977835

Nieder, J., van de Vijver, R., & Mitterer, H. (2021a). Knowledge of Maltese
singular–plural mappings. Morphology, 31, 147–170.

Nieder, J., van de Vijver, R., & Mitterer, H. (2021b). Priming Maltese plurals:
Representation of sound and broken plurals in the mental lexicon. The
Mental Lexicon, 16 (1), 69–97.

44

https://megamindhenry.github.io/JudiLing.jl/stable/
https://doi.org/10.1007/BF00208524
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1080/23273798.2021.1977835


Nosofsky, R. (1986). Attention, similarity and the identification-categorization
relationship. Experimental Psychology: General, 115 (1), 39–57.

Pater, J. (2004). Bridging the gap between receptive and productive develop-
ment with minimally violable constraints. In R. Kager, J. Pater, & W.
Zonneveld (Eds.), Constraints in Phonological Acquisition (pp. 219–
244). Cambridge University Press.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors
for word representation. Empirical Methods in Natural Language Pro-
cessing (EMNLP), 1532–1543. http://www.aclweb.org/anthology/
D14-1162

Prince, A., & Smolensky, P. (2004). Optimality Theory: Constraint Interac-
tion in Generative Grammar. Blackwell.

Rumelhart, D. E., & McClelland, J. L. (1986). On Learning the Past Tenses
of English Verbs. In J. L. McClelland & D. E. Rumelhart (Eds.),
Parallel Distributed Processing. Explorations in the Microstructure of
Cognition. Vol. 2: Psychological and Biological Models (pp. 216–271).
The MIT Press.

Saito, M., Tomaschek, F., & Baayen, R. (2021). Relative functional load de-
termines co-articulatory movements of the tonguetip. In M. Tiede,
D. H. Whalen, & V. Gracco (Eds.), Proceedings of the 12th Interna-
tional Seminar on Speech Production (ISSP 2020). Haskins Press.

Schembri, T. (2012). The broken plural in Maltese—A description. Brock-
meyer.

Shafaei-Bajestan, E., Moradipour-Tari, M., Uhrig, P., & Baayen, R. H. (2021).
LDL-AURIS: A computational model, grounded in error-driven learn-
ing, for the comprehension of single spoken words. Language, Cogni-
tion and Neuroscience. https://doi.org/https://www.tandfonline.
com/doi/full/10.1080/23273798.2021.1954207

Shafaei-Bajestan, E., Moradipour-Tari, M., Uhrig, P., & Baayen, R. H. (2022).
Semantic properties of english nominal pluralization: Insights from
word embeddings. Manuscript, University of Tübingen.

Sinclair, J. (1991a). Corpus, concordance, collocation. Oxford University Press.
Sinclair, J. (1991b). Corpus, concordance, collocation. Oxford University Press.
Skousen, R. (1989). Analogical modeling of language. Kluwer.
Smolensky, P. (1996). On the comprehension/production dilemma in child

language. Linguistic inquiry, 27 (4), 720–731.
Stump, G. T. (2001). Inflectional morphology: A theory of paradigm structure

(Vol. 93). Cambridge University Press.
Tomaschek, F., Plag, I., Ernestus, M., & Baayen, R. H. (2021). Phonetic

effects of morphology and context: Modeling the duration of word-final

45

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/https://www.tandfonline.com/doi/full/10.1080/23273798.2021.1954207
https://doi.org/https://www.tandfonline.com/doi/full/10.1080/23273798.2021.1954207
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