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Abstract

Comprehending and producing words is a natural process for human
speakers. In linguistic theory, investigating this process formally and com-
putationally is often done by focusing on forms only. By moving beyond
the world of forms, we show in this study that the Discriminative Lexicon
(DL) model operating with word comprehension as a mapping of form onto
meaning and word production as a mapping of meaning onto form generates
accurate predictions about what meanings listeners understand and what
forms speakers produce. Furthermore, we show that measures derived from
the computational model are predictive for human reaction times. Although
mathematically very simple, the linear mappings between form and meaning
posited by our model are powerful enough to capture the complexity and pro-
ductivity of a Semitic language with a complex hybrid morphological system.
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ductivity; Primed Lexical Decision

1



1 Introduction

Most formal and computational accounts of word structure unfold almost
exclusively in the world of forms: Forms are related to and compared with
other forms. For instance, the prosodic theory of non-concatenative morphol-
ogy laid out in McCarthy (1981) starts with underlying forms that are the
starting point for a set of rules that derive words’ surface forms. A Semitic
verb form is conceived of as consisting of a root, filled with consonants which
carry the meaning of the lexeme and its derivations, and a melody of vowels
in which inflection is expressed. The Arabic form kataba ‘he wrote’ con-
sists of the root

p
ktb, which expresses the lexeme ‘to write’ and the melody

aaa, which expresses third person singular past. Both, consonantal root and
vowel melody are mapped onto a skeleton CVCVCV from left to right result-
ing in the final word form kataba. Nouns, too, can have non-concatenative
inflections; in Arabic or Maltese non-concatenative plurals are referred to as
broken plurals. These plurals can be analyzed prosodically.

In subsequent work, the nature of the CV-skeleton changed, but not the
fact that forms are mapped onto forms. McCarthy and Prince (1990, 1996)
developed a theory, called Prosodic Morphology, in which the skeleton is re-
placed by prosodic categories using Arabic non-concatenative broken plurals
as a testing ground. The singular nafs ‘soul’ has a corresponding broken
plural nufuus. This plural can be characterized as an iamb: A light syl-
lable followed by a heavy syllable. Formally McCarthy and Prince (1990)
account for the iambic plural as a mapping of the phonological material from
the leftmost superheavy syllable (nafs) of the singular onto an iamb and a
concomitant change of vowel quality.

In a further attempt to reduce stipulations about the shape of non-
concatenative morphology, Kastner (2019) proposed that the symbols for
the verb and its inflectional features are first inserted into a syntactic tree.
Subsequently, general principles of the Hebrew sound system account for
the arrangement of the segmental material of the verbal root and its inflec-
tional exponents. For instance, the root node

p
ktb ‘to write’ and its voice

specification fa,ag for past tense are inserted into the syntactic tree in a
concatenative fashion as [Tense[Past [Voice [v

p
ktb]]]] (where small v is a

functional head). This results in the input form ktb,aa for the phonologi-
cal component. A hierarchy of constraints (Prince & Smolensky, 2004) then
predicts the optimal output katab. Instead of deriving Hebrew verbal forms
from consonantal roots, as argued by Kastner (2019) and McCarthy (1981),
Ussishkin (2005) proposes that words are derived from other words, subject
to a set of prosodic and morphological constraints.

Many computational models of morphology likewise do not predict words’
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forms from their meanings, but from other forms of these words. Some of
these models set up a list of possible changes that have to be applied to move
from one form to another, and then seek to predict which of the possible
form changes is appropriate given selected properties of the base word. For
instance, Ernestus and Baayen (2003) examined several quantitative models
that all were given the task to predict whether or not the stem-final obstru-
ent of a Dutch plural noun or verb form is voiced or voiceless. These models,
which ranged from recursive partitioning trees and logistic regression models
to Analogical Modeling (Skousen, 1989), Memory-Based learning (Daelemans
& Van den Bosch, 2005) and Optimality Theory (Boersma & Hayes, 2001),
all performed with roughly the same accuracy, suggesting that any reason-
ably decent statistical classifier, given access to the relevant features of the
base word, can accomplish this classification task.1 However, all these mod-
els are incomplete, in the sense that to create an actual plural form, the
appropriate voicing feature has to be combined with further concatenation
of the appropriate plural suffix.

For Semitic languages such as Arabic and Maltese, predicting the plural
of a noun is set up as a classification problem by Dawdy-Hesterberg and
Pierrehumbert (2014), focusing on Arabic, and by Nieder, Tomaschek, et al.
(2021), focusing on Maltese. The former study used the Generalized Context
Model (Nosofsky, 1986), the latter study applied Memory-Based learning
(Daelemans et al., 2001), Naive Discriminative Learning (Baayen, 2011), as
well as an Encoder-Decoder deep learning architecture (McCoy et al., 2020)
to generate plurals from singulars. The deep learning model stands in the
tradition of the past-tense model of Rumelhart and McClelland (1986), who
derived English past-tense forms from their present-tense counterparts.

The only way in which semantics plays a role in these grammatical and
computational models of inflection is through inflectional contrasts, such as
singular versus plural, which are used to set up separate classes of forms
(Albright & Hayes, 2003). However, it seems unlikely that native speakers
produce plurals from singulars (or vice versa). In her classic study of the
knowledge of children of English morphology, Berko (1958) notes that only
28% of the 4- and 5-year olds, and only 38% of the 5- and 7-year olds pro-
vided the plural gutchess for the given singular gutch. Van de Vijver and
Baer-Henney (2014) also found that many children repeat a novel given sin-
gular as plural in a wug test in German. Zamuner et al. (2006) found that
Dutch children are unable to form a novel singular from a given, novel plural,
while they have no problems providing a singular from a known plural. How-

1Thus, the recursive partitioning algorithm of Belth et al. (2021) is also likely to perform
well.
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ever, they were reasonably successful in providing novel plurals from novel
singulars. Klafehn (2013) reports that Japanese native speakers are unable
to provide inflected words for provided novel words.

All these results suggest that producing a novel word form is not neces-
sarily as straightforward as simply applying a rule to manipulate a form in an
appropriate context. But it is not just results from wug tests that strongly
indicate that plurals are not formed on the basis of their singulars. Bybee
(1995) argues that in Hausa it is more insightful to characterize a plural in
a product-oriented way: as a characterization of what makes a good plural
in Hausa, rather than as an instruction how to turn a singular into a plu-
ral. This is because there is little predictability from singular to plural. A
plural and a singular consist of overlapping phonological material, but the
overlap can be inconsistent from singular-plural pair to singular-plural pair.
Of course, there are situations in which form-to-form mappings are useful.
For instance, instructions for how to create the forms of a paradigm from its
principal parts can be quite helpful for second language learners, as a way to
efficiently master paradigms, and for analysts, as a way of coming to grips
with the systems of implications among word forms. But whether native
speakers derive forms via other forms remains an open question (Blevins,
2016; Nieder, Tomaschek, et al., 2021).

In this study, we move beyond the world of forms, and model compre-
hension as a mapping of form to meaning and production as a mapping of
meaning to form. We make use of a computational implementation of Word
and Paradigm Morphology (Blevins, 2016; Matthews & Matthews, 1972), the
‘discriminative lexicon’ (DL) (Baayen et al., 2019), to model the noun sys-
tem of Maltese, a Semitic language spoken in Europe. The DL model differs
from most theories of morphology in that comprehension and production is
achieved without requiring theoretical constructs such as stems, exponents,
and inflectional classes. In general, the task of morphological theory is often
conceptualized as providing a formal mechanism specifying what sound se-
quences are possible meaningful words. The DL model divides this task into
two subtasks: first, to predict what possible forms are, given their meanings;
and second, to predict what possible meanings are, given their forms.

In psychology, several computational models have been put forward that
construct complex words starting from their meanings. The models by Levelt
et al. (1999) and Dell (1986) are similar in design to realizational theories
of morphology (see, e.g., Bonami & Stump, 2016; Stump, 2001). To our
knowledge, these two psychological computational models have not been im-
plemented for and applied to languages other than English, and it is therefore
unclear whether the mechanisms of spreading activation and interactive acti-

4



vation, that they make use of, can be made to work for complex morphological
systems such as the Maltese noun system.

Gaskell and Marslen-Wilson (1997) proposed a three-layer network model
that maps speech input onto semantics, while explicitly shying away from
making claims about representations that might develop in the hidden layer
of their network. The triangle model of Harm and Seidenberg (2004) like-
wise addresses the relation between words' forms and their meanings, using
a more complex multi-layer network. This model has been tested not only
on English, but also on Serbo-Croatian (Mirkovi�c et al., 2005). Following
their lead, the `Discriminative Lexicon' model (Baayen et al., 2019) zooms
in on the mappings from form to meaning in visual and auditory compre-
hension, and the mapping from meaning to form in production. As in the
above connectionist models, both words' forms and their meanings are rep-
resented by high-dimensional numeric vectors. However, the DL model sim-
pli�es the connectionist multi-layer networks of Gaskell and Marslen-Wilson
(1997) and Harm and Seidenberg (2004) by removing all hidden layers. The
simple input-to-output network that results is mathematically equivalent to
multivariate multiple linear regression.

By representing words' meanings numerically, it becomes possible to
harness the power of distributional semantics (Landauer & Dumais, 1997;
Mikolov et al., 2013; Mitchell & Lapata, 2008) when considering the ques-
tions of what possible meanings are given words' forms, and what possible
forms are given words' meanings. This is important, because form and mean-
ing can show intricate interactions. For instance, Baayen and Moscoso del
Prado Mart��n (2005) called attention to irregular verbs in English (and as
well in German and Dutch) being more similar to each other in their mean-
ings than regular verbs. The greater semantic density of irregular verbs in
English may underlie the interaction of semantic de�cits and regularity in
aphasia reported by Bird et al. (2003), and modeled computationally using
distributional semantics by Heitmeier and Baayen (2021). Below, we shall
see that the broken plurals and the sound plurals of Maltese may also pattern
di�erently in semantic space.

Several studies suggest that the DL correctly predicts the forms of com-
plex words (see Baayen et al. (2018) for Latin verb inection, Chuang et al.
(2020) for Estonian noun inection, van de Vijver and Uwambayinema (ac-
cepted) and van de Vijver et al. (2021) for Kinyarwanda nouns and verbs,
and Chuang, Kang, Luo, et al. (2021) for Korean verbs). The �rst goal of
the present study is to clarify whether the theory of the DL also correctly
predicts Maltese singular and plural nouns. Of particular interest is how well
the simple networks used by the DL are able to model not only concatenative
morphology, but also non-concatenative morphology.
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The framework of the DL has also been used to predict how words are
realized phonetically. Tomaschek et al. (2021) modeled the duration of En-
glish word-�nal [s] for di�erent grammatical functions, Saito et al. (2021) used
measures from the model to predict tongue trajectories, Chuang, Vollmer,
et al. (2021) predicted word duration for English pseudowords as pronounced
by native speakers of English, and Chuang, Kang, Luo, et al. (2021) applied
the model to word duration in Taiwan Mandarin. The latter study also
shows that the priming e�ects reported for Dutch in Creemers et al. (2020)
are correctly predicted by the model (see also Baayen & Smolka, 2020, for
German). In the light of these results, the second goal of the present study
is to clarify whether measures derived from the model help predict lexical
processing costs, as gauged with a cross-modal primed lexical decision task.

The remainder of this paper is structured as follows. We �rst provide
an overview of plural formation in Maltese and report previous experimental
and computational studies on Maltese plurals. Section 3 proceeds with an
introduction to the `Discriminative Lexicon'. We then present the compu-
tational models that we developed for the Maltese noun system. We report
how well they perform as a memory for known words, and also examine the
extent to which the memory is productive, in the sense that it can handle
unseen words that it has not been trained on. Subsequently, we show how
the theory can be used to obtain further insight into the lexical processing of
Maltese nouns in comprehension. We conclude this study with a discussion
of the new insights that our results bring to morphological theory on the one
hand, and its limitations on the other hand.

2 Maltese plurals

The turbulent history of Malta is reected in the national language of the is-
land. Maltese developed from Maghrebi Arabic, and has absorbed inuences
from Sicilian, Italian and, more recently, from English. These inuences
a�ected its lexicon and its morphology (Hoberman, 2007).

The Maltese noun plural system shows a perplexing amount of possi-
ble plural forms. Maltese has a great number of typically Semitic non-
concatenative plural forms|called broken plurals in the Semitic linguistic
tradition. Broken plurals are characterized by di�erences in the prosodic
structure of a plural as compared to its corresponding singular form. For
example, the singular formkelb `dog' /kElp/ has the plural form klieb `dogs'
/ kli:p/ 2 in which the coda consonant [l] of the singular is found in the onset

2Another possible phonetic variant given in the online dictionary _Gabra is /klI:p/
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of the plural form. In addition, the vowel [E] in the singular form corresponds
to [i:] in the plural. Schembri (2012) distinguishes 11 di�erent broken plural
patterns. In Maltese, broken plurals account only for a small proportion of
plural forms of the language (Borg & Azzopardi-Alexander, 1997, report a
proportion of 10%). In addition to broken plurals, Maltese also has a sizable
set of sound plurals and the majority of plurals belong to this category (Borg
& Azzopardi-Alexander, 1997; Nieder, van de Vijver, et al., 2021a).

Sound plurals are characterized by additional segmental material at the
right side of the plural in comparison to the singular: The singular form
prezz `price' has the plural formprezzijiet in which the plural di�ers from
the singular due to the presence of a particular plural exponent, the su�x
-ijiet . In their work, Nieder, van de Vijver, et al. (2021a, 2021b) distinguish
12 di�erent sound plural patterns (they count the dual forms as a sound
plural pattern) with di�erent frequency distributions and productivity. Table
1 below gives an overview of the Maltese sound and broken plural patterns
and the two possible dual forms.

The complexity of the Maltese noun system stems from two sources. One
is the sheer variety of su�xes and patterns exhibited in plurals. This sets
Maltese apart from languages in which the complexity of nominal systems is
due to nouns falling into di�erent declension classes. The other complexity is
the availability of several plural forms for many singulars, without there being
a noticeable semantic di�erence among the plural variants. For example, the
singular kaxxa(sg.) `box' has two plural forms, one is a broken plural,kaxex,
and one is a sound plural,kaxxi; another example is the singulargiddieb(sg.)
`liar', which has two sound plural forms,giddiebaand giddibin.

In addition to sound and broken plurals, Maltese shows other plural types
for a small number of nouns, such as the suppletive plural, e.g.mara - nisa
`women' or a double plural marking that is a blend of a broken plural and
a sound plural su�x (called plural of the plural by Mayer et al. (2013)),
the singular tarf has the blended pluraltru�jiet `edge'. A few words are
pluralized with a dual su�x but grammatically behave like plural words, for
examplesieq - saqajn `foot' (Borg & Azzopardi-Alexander, 1997; Mayer et
al., 2013).

2.1 Experimental and computational research
on Maltese plurals

There exists both experimental and computational research on the Maltese
nominal system. In the following, we �rst discuss the experimental research
on Maltese nouns before turning to the computational studies.
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Singular Plural Gloss Plural Type

fardal fra:dal `aprons' broken A, CCVVCVC
birra birer `beers' broken B, (C)CVCVC
kbir kba:r `big (pl.)' broken C, CCVVC
ftira ftajjar `type of bread (pl.)' broken D, CCVjjVC
bitèa btieèi `yards' broken E, CCVVCV
sider isdra `chests' broken F, VCCCV
marid morda `sick persons' broken G, CVCCV
gèodda gèodod `tools' broken H, (gè)VCVC
elf eluf `thousands' broken I, VCVC
gèaref gèorrief `wise men' broken J, CVCCVVC(V)
gèama gèomja `blind persons' broken K, (gè)VCCV
karta karti `paper' sound, -i
omm ommijiet `mother' sound, -ijiet
rixa rixiet `feather' sound, -iet
giddieb giddieba `liar' sound, -a
meèlus meèlusin `freed' sound, -in
kuxin kuxins `cushion' sound, -s
triq triqat `street' sound, -at
sid sidien `owner' sound, -ien
baèri baèrin `sailor' sound, -n
èati èatjin `guilty' sound, -jin
qiegè qigèan `bottom' sound, -an
spalla spallejn `shoulder' dual, -ejn/ajn
sieq saqajn `foot' dual, -ejn/ajn

Table 1: Maltese broken plurals, sound plurals and duals (examples taken
from Nieder, van de Vijver, et al., 2021a; Schembri, 2012). The words are
provided in Maltese orthography, which is a close approximation of a broad
phonetic transcription, except in two cases. First, longa is not indicated
in orthography. We therefore added a colon to longa. Second, the digraph
gè is historically a pharyngeal fricative, which was lost in modern Maltese
(Borg & Azzopardi-Alexander, 1997).
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Two experimental studies have clari�ed that native speakers use infor-
mation about pattern frequency to produce and process plural forms for sin-
gulars they never heard before (Nieder, van de Vijver, et al., 2021a, 2021b).
While some plural su�xes and patterns occur frequently in the language, for
example the sound plural forms ending in-i and -ijiet or the broken plu-
ral patterns characterized by the CV-templatesCCVVCVC (broken A) and
CCVVC (broken C), others are found in a relatively small number of plural
forms only (see Nieder, van de Vijver, et al., 2021a, 2021b; Schembri, 2012,
for detailed information about pattern frequency in Maltese).

In a production study, Nieder, van de Vijver, et al. (2021a) asked Maltese
native speakers to produce plurals for existing singulars and pseudo-singulars.
The plurals produced by the participants reected the frequency of the plural
patterns in Maltese. The participants made use of more frequent plural suf-
�xes when they produced sound plurals and of more frequent CV templates
when they produced broken plurals (a �nding that is also reported by Drake
(2018) for Maltese diminutives).

Further evidence for the importance of the type frequency of exponents
(sound plurals) and CV templates (broken plurals) emerged from a reac-
tion time study by Nieder, van de Vijver, et al. (2021b). Frequent broken
templates and frequent sound plural exponents elicited signi�cantly shorter
reaction times than infrequent ones. This experiment did not provide evi-
dence for an e�ect of plural type (broken versus sound): on average, response
times for both kinds of plurals were highly similar. Below, we return to this
study, to show that nevertheless the way in which responses are generated in
this task di�ers for broken plurals and sound plurals.

Computational analyses of the Maltese plural formation have focused
on form-to-form modeling using sets of rules or using analogical mappings.
These computational studies are moving away from an earlier consensus
among Maltese scholars, according to which there are no rules governing
broken plurals (as discussed in Schembri, 2012). Invariably, the singular
form is taken as starting point for predicting the corresponding plural form.
Some models are classi�ers for plural classes, others generate full plural forms
given the corresponding singulars.

Mayer et al. (2013) present a computational study of Maltese broken
plurals that focuses on the application of rules to form plurals from singulars.
They propose a set of four rules, based on the work of Schembri (2012),
which derives broken plurals from their singulars. These rules were shown
to correctly derive 75% of all 654 forms in their database that have a broken
plural. This study shows unambiguously that the Maltese broken plurals
are to a considerable extent systematic, but it does not address the question
of how speakers select between broken and sound plurals. Furthermore, as
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mentioned above, it is not self-evident from a cognitive perspective that
speakers would create plurals from singulars.

Farrugia and Rosner (2008) also focused exclusively on broken plurals,
using an arti�cial neural network with encoder and decoder hidden layers, to
categorize and produce Maltese broken plurals. As basis for their work they
also edited the analysis of Schembri (2012). Operating on phoneme-based
representations, their model categorized nearly all nouns in their dataset with
an accuracy of around 98%. Although they report good results for forms the
model had seen in training, it did not perform well on unseen forms, achieving
exact matches between predicted and observed plural forms for only 26.6%
of the cases. This computational model again shows that there are indeed
systematic relations between the form of the singular and its broken plural
form, and that these relations can be derived from the data without requiring
handcrafted rules. It remains unclear, however, how the model would have
performed if it had been trained on both broken plurals and sound plurals
jointly.

Nieder, Tomaschek, et al. (2021) compared three di�erent computational
models to investigate whether it is in principle possible to account for the
form-based relations in Maltese nominal paradigms without taking recourse
to the construct of the morpheme: the Tilburg Memory-Based Learner
(TiMBL) (Daelemans et al., 2004), the Naive Discriminative Learner (NDL)
(Baayen, 2011), and an Encoder-Decoder network. TiMBL and NDL are
classi�ers, the Encoder-Decoder network is a model generating actual plural
forms. Models were trained on a dataset consisting of both sound plurals
and broken plurals. The classi�ers were given the task to predict which class
out of 8 plural classes (4 broken plural classes, and 4 sound plural classes:
three for the three most frequent exponents, and one for all other expo-
nents) is appropriate for a given singular. TiMBL's best performance under
10-fold cross-validation was 97%, whereas NDL's best performance under
10-fold cross-validation was 88.7%. The best performance of the Encoder-
Decoder model was at 48.22%. Interestingly, although information about the
CV template has been reported to increase classi�cation accuracy for Ara-
bic (Dawdy-Hesterberg & Pierrehumbert, 2014), such information did not
improve the accuracy of the TiMBL classi�er for Maltese.

What all these modeling studies clarify is that there is considerable struc-
ture in the Maltese noun system. However, the best-performing models are
either trained on only broken plurals, or they are trained to predict form
classes, including classes that lump together less frequent form changes. Fur-
thermore, all models focus on production, predicting plurals from singulars
without considering words' meanings, and do not address the comprehension
of Maltese nouns. In what follows, we address this broader range of questions
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within the framework of the Discriminative Lexicon. Before doing so, we �rst
introduce the dataset that we used for training and evaluating our models.

2.2 Dataset

The dataset consists of all broken plurals listed by Schembri (2012) and all
word forms tagged as nouns from the MLRS Korpus Malti version 2.0 and
3.0 (Gatt & �C�epl•o, 2013). The resulting list of nouns was then enriched
with information extracted from a Maltese online dictionary (_Gabra, Camil-
leri, 2013) using the free corpus toolCoquery (Kunter, 2017), resulting in a
dataset with singulars, their corresponding plurals and their glosses. Subse-
quently, the dataset was manually extended with information about gram-
matical number (broken vs. sound plural, dual or suppletive), CV structure,
number of occurrences (based on the Korpus Malti v. 2.0 and 3.0), origin
(Semitic vs. Non-Semitic), grammatical gender (based on Aquilina (1987)),
concreteness (abstract vs. concrete), and type of noun (verbal noun or col-
lective noun).

The resulting dataset contains 6511 word forms in total: 3364 plurals,
3132 singulars and 15 dual forms. Of the 3364 plurals, 892 are broken plural
forms while 2458 are sound plural forms (with a total of 11 di�erent sound
plural types and 11 di�erent broken plural types), reecting the proportion of
plural types in use in Maltese. The remaining 29 nouns of our dataset labeled
as plurals have plurals that are neither of the broken nor of the sound type:
8 of these words have a double plural marking, e.g.sema (sg.) - smewwiet
(pl.) `sky', which is a combination of a broken and a sound plural. Fifteen
words are dual forms, such asid (sg.) - idejn (dual) `hands', and 6 words
have a suppletive plural, e.g.mara (sg.) - nisa (pl.) `women', see Borg and
Azzopardi-Alexander (1997) for further details.

3 Predicting Maltese noun inection

The models for the Maltese plurals reviewed in section 2.1 all predict the
appropriate form of a plural from its corresponding singular. However useful
rules for building forms from other forms may be for the teaching of a second
language, it is far from clear that native speakers and young L1 learners
would follow the same procedure (Blevins, 2016; Dell, 1986; Levelt et al.,
1999; Zamuner et al., 2011). The DL model proposed by Baayen et al. (2019)
takes as its point of departure that the task of morphology is to explain how
listeners understand complex words, and how speakers produce them. In
other words, the DL focuses on understanding words' meanings given their
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forms, and producing words' forms given their meanings. Furthermore, the
relation between form and meaning is modeled as immediate, without any
further intervening layers of representations.

The central ideas underlying the perspective of DL on form and mean-
ing are illustrated in Figure 1. In the upper left, the matrix C speci�es,
for three wordsw1; w2; w3, their respective form vectors with values for two
form features, f 1 and f 2. In the upper right, the matrix S speci�es the
semantic vectors for the same three words, which have values on the seman-
tic dimensionss1 and s2. The form vectors are displayed in the lower left,
and the semantic vectors in the lower right. The mappingF takes the red
vectors and changes them into the blue vectors. Formally, this is done by
post-multiplying C with F : CF = S. Conversely, theG matrix takes the
blue vectors and maps them onto the red vectors:SG = C . The mappings
that the DL sets up between numeric vectors representing forms and numeric
vectors representing meanings are the simplest mappings possible. They can
be conceptualized as simple arti�cial neural networks connecting form units
(f 1; f 2) and semantic units (s1; s2). In other words, the mappings implement
full connectivity between all form units and all semantic units. The networks
do not make use of any hidden layers. Equivalently, the mappings of the DL
can also be understood as implementing multivariate multiple regression. For
comprehension, for instance, theF matrix can be interpreted as the matrix
with beta coe�cients of a regression model. The beta weights in the �rst col-
umn of F are used to predict the response variable given by the �rst column
of S. Likewise, the beta weights in the second column ofF are used to pre-
dict the response variable given in the second column ofS. The same logic
applies to the beta weights inG: For instance, the beta weights in the �rst
column are used to predict the response variable in the �rst column inC .
The method that we used to estimate the mappingsF and G is taken from
linear algebra, for technical details, the reader is referred to Shafaei-Bajestan
et al. (2021).

In general, for a given set ofn words andm dimensions in which di�er-
ences in form are expressed, we bring together their numeric form vectors into
an n � m form matrix C . Given k-dimensional vectors representing words'
meanings, we set up ann � k semantic matrix S. The m � k mapping F
takes the vectors inC and transforms these vectors as precisely as possible
into the semantic vectors ofS. This is accomplished by solving the equation
CF = S. For production, the DL model posits ak � m mapping G from
the meaning vectorsS to the form vectors in C . This matrix is estimated
by solving SG = C . For all but the smallest toy examples, the predicted
form vectorsĈ = SG will only approximate the targeted gold-standard form
vectorsC , which is why, following statistical practice, we use the notation̂C
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Figure 1: Linear mappings between form vectors (the row vectors ofC ,
displayed in red on the left) and meaning vectors (the row vectors ofS,
displayed in blue on the right). The mappingF changes the form vectors into
semantic vectors, and the inverse mappingG takes the semantic vectors and
changes them into the form vectors. The mappingsF and G de�ne networks,
the weights on connections from form featuresf to semantic featuress, and
from semantic featuress to form featuresf are given by the respective entries
in the mapping matrices.
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rather than C . The same holds for the predicted semantic vectorŝS. Nev-
ertheless, the estimated weights are optimal, in the sense that they minimize
the mean squared error. They represent the `endstate' of learning that a
simple two-layer arti�cial neural network can achieve by endlessly iterating
through the training data with the incremental learning rule of Widrow and
Ho� (1960). In what follows, we refer to the learning of the mappings using
the mathematics of multivariate linear regression as `Linear Discriminative
Learning' (LDL).

3.1 Constructing the form matrix

Lexeme Number Gender

kelb KELB singular M
kelba KELB singular F
klieb KELB plural M, F

Table 2: Paradigm for the Maltese nounkelb `dog'.

To illustrate the central concepts of LDL, consider the Maltese toy lexicon
listed in Table 2. This lexicon consists of a singular word for a male dog, a
singular word for a female dog and the plural word for both.

The �rst modeling step is to make a decision as to how these word forms
can be represented as numeric vectors. One possibility is to decompose word
forms into triphones, which target, in a crude way, context-sensitive phone
representations. Heitmeier et al. (2021) present a systematic overview of
modeling options for word form representations in LDL. They report best
generalizations for triphones (as compared to biphones or quadrophones) due
to their discriminatory power as a result of a balanced number of unique cues
(see Heitmeier et al., 2021). For our example lexicon, there are 11 distinct tri-
phones. We couple each distinct triphone with a form dimension. Words that
contain a given triphone receive the value 1 for this dimension, and otherwise
the value 0. For our example lexicon, we obtain the following form matrixC :

C =
0

@

# ke kel elb lb# lba ba# # kl kli lie ieb eb #
kelb 1 1 1 1 0 0 0 0 0 0 0
kelba 1 1 1 0 1 1 0 0 0 0 0
klieb 0 0 0 0 0 0 1 1 1 1 1

1

A

In this form matrix, the hash mark # represents a word boundary.
Instead of representing words' forms by indicating which triphones are

present, we can set up form vectors that decompose a word's form into its
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constituent syllables. In this study, again based on the results of Heitmeier
et al. (2021), we opted for bi-syllable cues that are not only a linguistically-
informed unit driving articulation (Levelt et al., 1999) but are also known
to capture certain suprasegmental e�ects (Heitmeier et al., 2021). Below, we
report results for simulations using these two ways of representing word form
information.

3.2 Constructing the semantic matrix

The row vectors of the semantic matrixS represent a word form's mean-
ing numerically. Within the general framework of distributional semantics,
many algorithms are now available for deriving semantic vectors (known as
embeddings in computational linguistics) from corpora (Baroni et al., 2014;
Bojanowski et al., 2017; Joulin, Grave, Bojanowski, Douze, et al., 2016;
Joulin, Grave, Bojanowski, & Mikolov, 2016; Mikolov et al., 2013; Penning-
ton et al., 2014; Yang et al., 2017). In the present study, we explore two kinds
of semantic vectors: vectors that we constructed ourselves in a linguistically
informed way, which we call simulated vectors, and ready-made vectors that
were generated withfasttext (Joulin, Grave, Bojanowski, Douze, et al.,
2016; Joulin, Grave, Bojanowski, & Mikolov, 2016), which we call corpus-
based vectors.

3.2.1 Simulated vectors

The row vectors of the semantic matrixS represent words' meanings in a
high-dimensional space. We can simulate such vectors using a random num-
ber generator. The idea underlying this approach is similar to the statistical
concept of `generating' a statistical model: when we model a response vari-
able y as a linear function ofx,

yi = a + bxi + � i ;

the hope is that we can generate a dataset that has all the properties of the
observed data, with as only di�erence the measurement errors� i . When sim-
ulating semantic vectors, we do the same: we set up a model that generates
semantic vectors that represent the semantic structure of words, apart from
word-speci�c or idiosyncratic aspects of words' meanings (see, e.g., Booij,
1996; Sinclair, 1991a, for word-speci�c semantics of inherent inection). For
our example lexicon, we generated 11-dimensional vectors, matching the di-
mensionality of the form matrix C . The result is a straightforward table
with real-valued numbers:
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S =
0

@

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
kelb 0:46 4:16 8:50 � 4:46 8:96 � 4:11 8:42 9:21 � 25:75 15:83 � 14:93

kelba 0:61 � 11:93 8:09 1:00 3:44 � 11:98 8:72 � 4:75 � 33:29 10:39 � 2:12
klieb 5:67 9:84 11:26 0:85 10:69 � 4:24 0:21 4:81 � 26:47 10:82 � 11:76

1

A

However, if we use this method to create semantic vectors for each word
form, then, unavoidably, the resulting semantic vectors are almost completely
uncorrelated, which implies that the meanings of these words are understood
to be semantically entirely unrelated. When considering monomorphemic
words, such uncorrelated vectors are justi�able as a very �rst approximation
that is no worse (but also no better) than representing words' meanings by
their own symbolic nodes. However, since inected words share inectional
features, we need to generate vectors that properly reect that for instance
plurals are semantically more similar to other plurals, and less similar in
meaning than singulars.

Following Baayen et al. (2019), we generated semantic vectors of inected
words by taking the (generated) vector of the lexeme and adding to it addi-
tional (generated) vectors, one for each inectional function. For the Latin
noun horti (`garden', genitive singular), for instance, a vector for genitive
and a vector for singular are added to the vector ofgarden :

��!
horti =

�����!
garden +

�������!
singular +

������!
genitive :

For Maltese nouns, we considered several semantic features: whether a noun
is derived from a verb (e.g., participles), whether a noun has collective se-
mantics, whether a noun has masculine or feminine gender, and number.
The former two features were coded as privative oppositions, i.e., we added
a vector representing collective semantics to collective meanings, but left the
semantic vectors of all other nouns unchanged. For the latter two features, we
generated semantic vectors under the assumption that here we have equipol-
lent oppositions. For number, we thus decided to construct three semantic
vectors, one for singular meaning, one for dual meaning, and one for plural
meaning. For the formskelb, kelbaand klieb, the semantic vectors in our ex-
ample lexicon given above (matrixS) were obtained by adding the pertinent
inectional vectors to the vectors of the lexemes, together with error vectors
representing words' semantic idiosyncracies:

kelb:
���!
kelb +

�������!
singular +

��������!
masculine + �! "

kelba:
���!
kelb +

�������!
singular +

������!
feminine + �! "

klieb:
���!
kelb +

�����!
plural +

��������!
masculine + �! "
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An alternative coding for number, that we did not pursue, would be to code
number as a privative opposition, with an unmarked singular and marked
dual and plural. However, as the broken plurals are formally not marked vari-
ants of their corresponding singulars, we opted for implementing equipollent
semantic vectors for number.

In summary, we generate semantic vectors for inected forms by addition
of the primitive vectors for their constituent meanings. This additive process
is the way in which we approximate the conceptualization of the semantics
of inected words.

3.2.2 Corpus-based vectors using fasttext

Although simulated vectors have been found useful for modeling morpholog-
ical processing in comprehension and production, they make the simplifying
assumption that all base word lexemes are semantically unrelated: their sim-
ulated semantic vectors are almost completely orthogonal. In addition, the
way in which inectional semantics is accounted for may also require more
precision, see, e.g., Shafaei-Bajestan et al. (2022) for discussion of the seman-
tics of the English noun plural. Instead of working with simulated vectors,
Baayen et al. (2019) derived semantic vectors for both content lexemes and
inectional functions such as singular and plural by �rst morphologically tag-
ging a corpus (in their study, the TASA corpus, Ivens & Koslin, 1991), and
then using a method from distributional semantics to construct semantic vec-
tors for both content words and for the inectional (as well as derivational)
functions identi�ed by the tagger.

Since computational resources for Maltese are limited, for the present
study, we complemented modeling using simulated vectors with modeling
using ready-made vectors that were created withfasttext (Joulin, Grave,
Bojanowski, Douze, et al., 2016; Joulin, Grave, Bojanowski, & Mikolov,
2016). Fasttext is an open-source library for text classi�cation and repre-
sentation that o�ers the possibility to train a fasttext model on a set of
data or to download pre-trained vectors for various languages from https:
//fasttext.cc/docs/en/crawl-vectors.html. For this study, we opted for the
latter approach.

Modeling with fasttext vectors has as advantage, compared to simulated
vectors, that the LDL mappings will be able to take into account similar-
ities in meaning between content words, as well as inectional similarities.
However, the algorithm underlyingfasttext constructs semantic vectors for
words from semantic vectors of substrings of words by representing words
as a sum of their character n-grams (see Joulin, Grave, Bojanowski, Douze,
et al., 2016; Joulin, Grave, Bojanowski, & Mikolov, 2016, for details on how
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the vectors were created). As a consequence, it cannot be completely ruled
out that for inected words the algorithm is capturing not only similarities
in meaning but also similarities in form.

We extracted fasttext vectors for the word forms in our data set using
the pre-trained 300 dimensional word-vectors that are available for Maltese at
https://fasttext.cc/docs/en/crawl-vectors.html. For 4056 of the 6511 nouns
in our dataset, fasttext vectors were available; of these 4056 word forms,
2266 are singulars and 1781 are plurals.

In order to obtain some insight in how wellfasttext captures the di�er-
ence between singular and plural meaning, we projected the 300-dimensional
fasttext space onto a 2-dimensional plane using Principal Components
Analysis. A scatterplot of nouns in the plane of the �rst two principal compo-
nents, color-coded for number and plural type, is shown in Figure 2. Interest-
ingly, we �nd distinguishable clusters of singulars (light green) and plurals
(orange, dark green), albeit with considerable overlap. In addition, sound
plurals (orange) and broken plurals (dark green) seem to dwell in somewhat
di�erent semantic subspaces as well. This is con�rmed by a Linear Discrim-
inant Analysis (LDA), which showed that a classi�cation of singular, sound
plural and broken plural words using the �rst �fty principal components
reaches 85% classi�cation accuracy. Apparently, number and type of plural
are to some extent intertwined with word meaning. This interaction of regu-
larity with semantics replicates a similar interaction for English regular and
irregular verbs reported by Baayen and Moscoso del Prado Mart��n (2005).

Figure 3 addresses how wellfasttext captures di�erences in gender. De-
spite substantial overlap of the clusters, Linear Discriminant Analysis, again
using the �rst �fty principal components, achieved a classi�cation accuracy
of 79% and 70% for singular and plural words respectively. For the other se-
mantic features labeled in our dataset (concreteness, verbal noun, collective
noun), however, due to the fact that usually one level has overwhelmingly
more tokens than the other, no clustering in the semantic space could be
observed.

Above, we mentioned thatfasttext looks \into" words by representing
word forms as a bag of n-grams, and that as a consequence, it cannot be ruled
out a-priori that similarities in meaning are confounded with similarities in
form. However, given the complexities of the Maltese plural forms, it is
unlikely that the clustering visible in Figure 2 is driven predominantly by
form similarity. Nevertheless, replication of this interaction of plural type
and semantics using, for instance,word2vec (Mikolov et al., 2013), would
strengthen the present conclusions for Maltese.
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Figure 2: Projection of fasttext semantic vectors onto a two-dimensional
plane. Number and plural types (sound and broken) are color-coded. Sin-
gulars and broken plurals cluster more to the right on PC1, whereas sound
plurals and broken plurals cluster more to the top on PC2.

3.2.3 Evaluating model performance

Before reporting how well the DL model approximates the Maltese noun
system, we need to explain how we evaluate model performance.

To evaluate comprehension, we calculated the correlations between a
given word's predicted semantic vector (^si ) and all the gold standard se-
mantic vectors in the lexicon (the row vectors ofS). If ŝi has the highest
correlation with the semantic vector of the targeted word (si ), comprehension
is considered successful. On the other hand, unsuccessful comprehension oc-
curs when the highest correlation is with another word than target word. It
should be noted that for homophones, we consider comprehension correct as
long asŝi has the best correlation with one of the homophone meanings, e.g.
Maltese xark `shark' /S5rk/ and xark / S5rk/ `a person who conducts busi-
ness shrewdly or acts for their own material bene�t' (note that there also is
a Semitic word to express `shark' available in Maltese:kelb il-baèar ). This is
because here we are modeling the processing of words in isolation. Given that
it is not possible to recognize a speci�c homophone meaning out of context,
we therefore adopted this lenient evaluation metric for comprehension.

With respect to production, as a �rst step, we generated for each wordi
the predicted form vectorĉi from its semantic vectorsi . This predicted form
vector, however, only provides information about the amount of semantic
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